Problem Set

Chapter 04.07
 LU Decomposition

1. Show that LU decomposition is computationally a more efficient way of finding the inverse of a square matrix than using Gaussian elimination.
2. Use LU decomposition to find [L] and [U]

$$
\begin{aligned}
& 4 x_{1}+x_{2}-x_{3}=-2 \\
& 5 x_{1}+x_{2}+2 x_{3}=4 \\
& 6 x_{1}+x_{2}+x_{3}=6
\end{aligned}
$$

3. Find the inverse of

$$
[A]=\left[\begin{array}{ccc}
3 & 4 & 1 \\
2 & -7 & -1 \\
8 & 1 & 5
\end{array}\right]
$$

using LU decomposition.
4. Fill in the blanks for the unknowns in the LU decomposition of the matrix given below

$$
\left[\begin{array}{ccc}
25 & 5 & 4 \\
75 & 7 & 16 \\
12.5 & 12 & 22
\end{array}\right]=\left[\begin{array}{ccc}
\ell_{11} & 0 & 0 \\
\ell_{21} & \ell_{22} & 0 \\
\ell_{31} & \ell_{32} & \ell_{33}
\end{array}\right]\left[\begin{array}{ccc}
25 & 5 & 4 \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]
$$

5. Show that the nonsingular matrix

$$
[A]=\left[\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right]
$$

cannot be decomposed into LU form.
6. The LU decomposition of

$$
[A]=\left[\begin{array}{ccc}
4 & 1 & -1 \\
5 & 1 & 2 \\
6 & 1 & 1
\end{array}\right]
$$

is given by
$\left[\begin{array}{ccc}4 & 1 & -1 \\ 5 & 1 & 2 \\ 6 & 1 & 1\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1.25 & 1 & 0 \\ 1.5 & 2 & 1\end{array}\right]\left[\begin{array}{ccc}? ? & ? ? & ? ? \\ 0 & ? ? & ? ? \\ 0 & 0 & ? ?\end{array}\right]$

Find the upper triangular matrix in the above decomposition?

