Differentiation-Discrete Functions

Chemical Engineering Majors

Authors: Autar Kaw, Sri Harsha Garapati

http://numericalmethods.eng.usf.edu

Transforming Numerical Methods Education for STEM Undergraduates

Differentiation –Discrete Functions

Forward Difference Approximation

$$f'(x) = \frac{\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

For a finite $\Delta x'$

$$f'(x) \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Graphical Representation Of Forward Difference Approximation

Figure 1 Graphical Representation of forward difference approximation of first derivative.

Example 1

A new fuel for recreational boats being developed at the local university was tested at an area pond by a team of engineers. The interest is to document the environmental impact of the fuel – how quickly does the slick spread? Table 1 shows the video camera record of the radius of the wave generated by a drop of the fuel that fell into the pond.

Using the data

a)Compute the rate at which the radius of the drop was changing at t = 2 seconds.

b)Estimate the rate at which the area of the contaminant was spreading across the pond at t = 2 seconds.

Example 1 Cont.

 Table 1
 Radius as a function of time.

Time t (s)	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
Radius R (m)	0	0.236	0.667	1.225	1.886	2.635	3.464	4.365	5.333

Use Forward Divided Difference approximation of the first derivative to solve the above problem. Use a time step of 0.5 sec.

Example 1 Cont.

Example 1 Cont.

(b)
$$Area = \pi R^2$$

Time	t(s)	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
Area	$A(m^2)$	0	0.17497	1.3977	4.7144	11.175	21.813	37.697	59.857	89.350

$$A'(t_{i}) \approx \frac{A(t_{i+1}) - A(t_{i})}{\Delta t}$$

$$t_{i} = 2$$

$$t_{i+1} = 2.5$$

$$\Delta t = t_{i+1} - t_{i}$$

$$= 2.5 - 2$$

$$= 0.5$$

$$A'(10) \approx \frac{A(2.5) - A(2)}{0.5}$$

$$\approx \frac{21.813 - 11.175}{0.5}$$

$$\approx 21.276 \text{ m}^{2}/\text{s}$$

Direct Fit Polynomials

In this method, given '*n*+1' data points $(x_0, y_0), (x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ one can fit a n^{th} order polynomial given by $P_n(x) = a_0 + a_1x + \dots + a_{n-1}x^{n-1} + a_nx^n$

To find the first derivative,

$$P'_{n}(x) = \frac{dP_{n}(x)}{dx} = a_{1} + 2a_{2}x + \dots + (n-1)a_{n-1}x^{n-2} + na_{n}x^{n-2}$$

Similarly other derivatives can be found.

A new fuel for recreational boats being developed at the local university was tested at an area pond by a team of engineers. The interest is to document the environmental impact of the fuel – how quickly does the slick spread? Table 2 shows the video camera record of the radius of the wave generated by a drop of the fuel that fell into the pond. Using the data

(a) Compute the rate at which the radius of the drop was changing at t = 2 seconds.
(b) Estimate the rate at which the area of the contaminant was spreading across the pond at t = 2 seconds.

 Table 2 Radius as a function of time.

Time (s)	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
Radius (m)	0	0.236	0.667	1.225	1.886	2.635	3.464	4.365	5.333

Use the third order polynomial interpolant for radius and area calculations.

Solution

(a) For the third order polynomial (also called cubic interpolation), we choose the radius given by

$$R(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$$

Since we want to find the radius at t = 2, and we are using a third order polynomial, we need to choose the four points closest to t = 2 and that also bracket t = 2 to evaluate it.

The four points are $t_0 = 1.0, t_1 = 1.5, t_2 = 2.0, \text{ and } t_3 = 2.5.$ (Note: Choosing $t_0 = 1.5, t_1 = 2.0, t_2 = 2.5, \text{ and } t_3 = 3.0$ is equally valid.) $t_o = 1.0, R(t_o) = 0.667$ $t_1 = 1.5, R(t_1) = 1.225$ $t_2 = 2.0, R(t_2) = 1.886$ $t_3 = 2.5, R(t_3) = 2.635$

such that $R(1.0) = 0.667 = a_0 + a_1(1.0) + a_2(1.0)^2 + a_3(1.0)^3$ $R(1.5) = 1.225 = a_0 + a_1(1.5) + a_2(1.5)^2 + a_3(1.5)^3$ $R(2.0) = 1.886 = a_0 + a_1(2.0) + a_2(2.0)^2 + a_3(2.0)^3$ $R(2.5) = 2.635 = a_0 + a_1(2.5) + a_2(2.5)^2 + a_3(2.5)^3$

Writing the four equations in matrix form, we have

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1.5 & 2.25 & 3.375 \\ 1 & 2 & 4 & 8 \\ 1 & 2.5 & 6.25 & 15.625 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 0.667 \\ 1.225 \\ 1.886 \\ 2.635 \end{bmatrix}$$

Solving the above four equations gives

 $a_0 = -0.080000$ $a_1 = 0.47100$ $a_2 = 0.29599$ $a_3 = -0.020000$

Hence

$$R(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$$

= -0.080000 + 0.47100 t + 0.29599 t^2 - 0.020000 t^3, 1 \le t \le 2.5

The derivative of radius at t=2 is given by

$$R'(2) = \frac{d}{dt} R(t) \Big|_{t=2}$$

Given that

,

$$R(t) = -0.080000 + 0.47100t + 0.29599t^{2} - 0.020000t^{3}, \quad 1 \le t \le 2.5$$

$$R'(t) = \frac{d}{dt}R(t)$$

$$= \frac{d}{dt}(-0.080000 + 0.47100t + 0.29599t^{2} - 0.020000t^{3})$$

$$= 0.47100 + 0.59180t - 0.060000t^{2}, \quad 1 \le t \le 2.5$$

$$R'(2) = 0.47100 + 0.59180(2) - 0.060000(2)^{2}$$

$$= 1.415 \text{ m/s}$$

(b) $Area = \pi R^2$

Time	t(s)	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
Area	$A(m^2)$	0	0.17497	1.3977	4.7144	11.175	21.813	37.697	59.857	89.350

For the third order polynomial (also called cubic interpolation), we choose the area given by $A(t) = a_0 + a_1t + a_2t^2 + a_3t^3$

Since we want to find the area at t = 2, and we are using a third order polynomial, we need to choose the four points closest to t = 2 and that also bracket t = 2 to evaluate it.

The four points are $t_0 = 1.0, t_1 = 1.5, t_2 = 2.0$, and $t_3 = 2.5$.

(Note: Choosing $t_0 = 1.5, t_1 = 2.0, t_2 = 2.5, \text{ and } t_3 = 3.0$ is equally valid.)

$$t_o = 1.0, \ A(t_o) = 1.3977$$

 $t_1 = 1.5, \ A(t_1) = 4.7144$
 $t_2 = 2.0, \ A(t_2) = 11.175$
 $t_3 = 2.5, \ A(t_3) = 21.813$

Example 2-fit Direct Ploynomials cont.

such that

$$A(1.0) = 1.3977 = a_0 + a_1(1.0) + a_2(1.0)^2 + a_3(1.0)^3$$

$$A(1.5) = 4.7144 = a_0 + a_1(1.5) + a_2(1.5)^2 + a_3(1.5)^3$$

$$A(2.0) = 11.175 = a_0 + a_1(2.0) + a_2(2.0)^2 + a_3(2.0)^3$$

$$A(2.5) = 21.813 = a_0 + a_1(2.5) + a_2(2.5)^2 + a_3(2.5)^3$$

Writing the four equations in matrix form, we have

[1	1	1	1	$\begin{bmatrix} a_0 \end{bmatrix}$	[1.3977]
1	1.5	2.25	3.375	a_1	 4.7144
1	2	4	8	a_2	11.175
1	2.5	6.25	15.625	$\lfloor a_3 \rfloor$	21.813

Solving the above four equations gives

$$a_0 = 0.057900$$

 $a_1 = -0.12075$
 $a_2 = 0.081468$
 $a_3 = 1.3790$

Hence

$$A(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$$

 $= 0.057900 - 0.12075t + 0.081468t^{2} + 1.3790t^{3}, \quad 1 \le t \le 2.5$

The derivative of radius at t=2 is given by

$$A'(2) = \frac{d}{dt} E(t)\big|_{t=2}$$

Given that

,

$$A(t) = 0.057900 - 0.12075t + 0.081468t^{2} + 1.3790t^{3}, \quad 1 \le t \le 2.5$$

$$A'(t) = \frac{d}{dt}A(t)$$

$$= \frac{d}{dt}(= 0.057900 - 0.12075t + 0.081468t^{2} + 1.3790t^{3})$$

$$= -0.12075 + 0.16294t + 4.1371t^{2}, \quad 1 \le t \le 2.5$$

$$A'(2) = -0.12075 + 0.16294(2) + 4.1371(2)^{2}$$

$$= 16.754 \text{ m}^{2}/\text{s}$$

Lagrange Polynomial

In this method, given $(x_1, y_1), \dots, (x_n, y_n)$, one can fit a $(n-1)^{th}$ order Lagrangian polynomial given by

$$f_n(x) = \sum_{i=0}^n L_i(x) f(x_i)$$

where 'n ' in $f_n(x)$ stands for the n^{th} order polynomial that approximates the function y = f(x) given at (n+1) data points as $(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1}), (x_n, y_n)$, and

$$L_{i}(x) = \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}}$$

 $L_i(x)$ a weighting function that includes a product of (n-1) terms with terms of j = i omitted.

Lagrange Polynomial Cont.

Then to find the first derivative, one can differentiate $f_n(x)$ once, and so on for other derivatives.

For example, the second order Lagrange polynomial passing through $(x_0, y_0), (x_1, y_1), (x_2, y_2)$ is

$$f_2(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} f(x_0) + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} f(x_1) + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} f(x_2)$$

Differentiating equation (2) gives

$$f_{2}'(x) = \frac{2x - (x_{1} + x_{2})}{(x_{0} - x_{1})(x_{0} - x_{2})} f(x_{0}) + \frac{2x - (x_{0} + x_{2})}{(x_{1} - x_{0})(x_{1} - x_{2})} f(x_{1}) + \frac{2x - (x_{0} + x_{1})}{(x_{2} - x_{0})(x_{2} - x_{1})} f(x_{2})$$

Differentiating again would give the second derivative as

$$f_{2}''(x) = \frac{2}{(x_{0} - x_{1})(x_{0} - x_{2})} f(x_{0}) + \frac{2}{(x_{1} - x_{0})(x_{1} - x_{2})} f(x_{1}) + \frac{2}{(x_{2} - x_{0})(x_{2} - x_{1})} f(x_{2})$$

Example 3

A new fuel for recreational boats being developed at the local university was tested at an are pond by a team of engineers. The interest is to document the environmental impact of the fuel – how quickly does the slick spread? Table 3 shows the video camera record of the radius of the wave generated by a drop of the fuel that fell into the pond. Using the data

(a)Compute the rate at which the radius of the drop was changing at t = 2. (b)Estimate the rate at which the area of the contaminant was spreading across the pond at t = 2.

Time t (s)	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5		
Radius R (m)	0	0.236	0.667	1.225	1.886	2.635	3.464	4.365		

Table 3 Radius as a function of time.

Use second order Lagrangian polynomial interpolation to solve the problem.

4.0

5.333

Example 3 Cont.

Solution:

(a) For second order Lagrangian polynomial interpolation, we choose the radius given by

$$R(t) = \left(\frac{t-t_1}{t_0-t_1}\right) \left(\frac{t-t_2}{t_0-t_2}\right) R(t_0) + \left(\frac{t-t_0}{t_1-t_0}\right) \left(\frac{t-t_2}{t_1-t_2}\right) R(t_1) + \left(\frac{t-t_0}{t_2-t_0}\right) \left(\frac{t-t_1}{t_2-t_1}\right) R(t_2)$$

Since we want to find the radius at t=2, and we are using a second order Lagrangian polynomial, we need to choose the three points closest to t=2 that also bracket t=2 to evaluate it.

The three points are $t_0 = 1.5$, $t_1 = 2.0$, and $t_2 = 2.5$.

Differentiating the above equation gives

$$R'(t) = \frac{2t - (t_1 + t_2)}{(t_0 - t_1)(t_0 - t_2)} R(t_0) + \frac{2t - (t_0 + t_2)}{(t_1 - t_0)(t_1 - t_2)} R(t_1) + \frac{2t - (t_0 + t_1)}{(t_2 - t_0)(t_2 - t_1)} R(t_2)$$

Hence,

$$R'(2) = \frac{2(2) - (2.0 + 2.5)}{(1.5 - 2.0)(1.5 - 2.5)}(1.225) + \frac{2(2) - (1.5 + 2.5)}{(2.0 - 1.5)(2.0 - 2.5)}(1.886) + \frac{2(2) - (1.5 + 2.0)}{(2.5 - 1.5)(2.5 - 2.0)}(2.635)$$

=1.4100 m/s

Example 3 Cont.

(b)
$$Area = \pi R^2$$

Time $t(s)$	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
Area $A(m)$	0	0.17497	1.3977	4.7144	11.175	21.813	37.697	59.857	89.350

For second order Lagrangian polynomial interpolation, we choose the area given by

$$A(t) = \left(\frac{t-t_1}{t_0-t_1}\right) \left(\frac{t-t_2}{t_0-t_2}\right) A(t_0) + \left(\frac{t-t_0}{t_1-t_0}\right) \left(\frac{t-t_2}{t_1-t_2}\right) A(t_1) + \left(\frac{t-t_0}{t_2-t_0}\right) \left(\frac{t-t_1}{t_2-t_1}\right) A(t_2)$$

Example 3 Cont.

Since we want to find the area at t=2, and we are using a second order Lagrangian polynomial, we need to choose the three points closest to t=2that also brackets t=2 to evaluate it. The three points are $t_0=1.5$, $t_1=2.0$, and $t_2=2.5$.

Differentiating the above equation gives

$$A'(t) = \frac{2t - (t_1 + t_2)}{(t_0 - t_1)(t_0 - t_2)} A(t_0) + \frac{2t - (t_0 + t_2)}{(t_1 - t_0)(t_1 - t_2)} A(t_1) + \frac{2t - (t_0 + t_1)}{(t_2 - t_0)(t_2 - t_1)} A(t_2)$$

Hence

$$A'(2) = \frac{2(2) - (2.0 + 2.5)}{(1.5 - 2.0)(1.5 - 2.5)} (4.7144) + \frac{2(2) - (1.5 + 2.5)}{(2.0 - 1.5)(2.0 - 2.5)} (11.175) + \frac{2(2) - (1.5 + 2.0)}{(2.5 - 1.5)(2.5 - 2.0)} (21.813)$$

 $=17.099 \text{ m}^2/\text{s}$

Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

http://numericalmethods.eng.usf.edu/topics/discrete_02 dif.html

THE END