Differentiation-Discrete Functions

Chemical Engineering Majors

Authors: Autar Kaw, Sri Harsha Garapati

http:// numericalmethods.eng.usf.edu
Transforming Numerical Methods Education for STEM Undergraduates

Differentiation -Discrete Functions

Forward Difference Approximation

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

For a finite ' Δx '

$$
f^{\prime}(x) \approx \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

Graphical Representation Of Forward Difference Approximation

Figure 1 Graphical Representation of forward difference approximation of first derivative.

Example 1

A new fuel for recreational boats being developed at the local university was tested at an area pond by a team of engineers. The interest is to document the environmental impact of the fuel - how quickly does the slick spread? Table 1 shows the video camera record of the radius of the wave generated by a drop of the fuel that fell into the pond.

Using the data
a)Compute the rate at which the radius of the drop was changing at $t=2$ seconds.
b) Estimate the rate at which the area of the contaminant was spreading across the pond at $t=2$ seconds.

Example 1 Cont.

Table 1 Radius as a function of time.

Time $t(\mathrm{~s})$	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
Radius $R(\mathrm{~m})$	0	0.236	0.667	1.225	1.886	2.635	3.464	4.365	5.333

Use Forward Divided Difference approximation of the first derivative to solve the above problem. Use a time step of 0.5 sec .

Example 1 Cont.

Solution

$$
\text { (a) } \begin{aligned}
R^{\prime}\left(t_{i}\right) & \approx \frac{R\left(t_{i+1}\right)-R\left(t_{i}\right)}{\Delta t} \\
t_{i} & =2 \\
t_{i+1} & =2.5 \\
\Delta t & =\boldsymbol{t}_{i+1}-\boldsymbol{t}_{i} \\
& =2.5-2 \\
& =0.5 \\
R^{\prime}(2) & \approx \frac{R(2.5)-R(2)}{0.5} \\
& \approx \frac{2.635-1.886}{0.5} \\
& \approx 1.498 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

EK2n@OE

(b) Area $=\pi R^{2}$

Time	$t(\mathrm{~s})$	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
Area	$A\left(\mathrm{~m}^{2}\right)$	0	0.17497	1.3977	4.7144	11.175	21.813	37.697	59.857	89.350

$$
\begin{aligned}
A^{\prime}\left(t_{i}\right) & \approx \frac{A\left(t_{i+1}\right)-A\left(t_{i}\right)}{\Delta t} \\
t_{i} & =2 \\
t_{i+1} & =2.5 \\
\Delta t & =t_{i+1}-t_{i} \\
& =2.5-2 \\
& =0.5 \\
A^{\prime}(10) & \approx \frac{A(2.5)-A(2)}{0.5} \\
& \approx \frac{21.813-11.175}{0.5} \\
& \approx 21.276 \mathrm{~m}^{2} / \mathrm{s}
\end{aligned}
$$

Direct Fit Polynomials

In this method, given ' $n+1$ ' data points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ one can fit a $n^{\text {th }}$ order polynomial given by

$$
P_{n}(x)=a_{0}+a_{1} x+\ldots \ldots+a_{n-1} x^{n-1}+a_{n} x^{n}
$$

To find the first derivative,
$P_{n}^{\prime}(x)=\frac{d P_{n}(x)}{d x}=a_{1}+2 a_{2} x+\ldots \ldots+(n-1) a_{n-1} x^{n-2}+n a_{n} x^{n-1}$
Similarly other derivatives can be found.

Example 2-Direct Fit Polynomials

A new fuel for recreational boats being developed at the local university was tested at an area pond by a team of engineers. The interest is to document the environmental impact of the fuel - how quickly does the slick spread? Table 2 shows the video camera record of the radius of the wave generated by a drop of the fuel that fell into the pond. Using the data
(a) Compute the rate at which the radius of the drop was changing at $t=2$ seconds.
(b) Estimate the rate at which the area of the contaminant was spreading across the pond at $t=2$ seconds.

Table 2 Radius as a function of time.

Time (s)	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
Radius (m)	0	0.236	0.667	1.225	1.886	2.635	3.464	4.365	5.333

Use the third order polynomial interpolant for radius and area calculations.

Example 2-Direct Fit Polynomials cont.

Solution

(a) For the third order polynomial (also called cubic interpolation), we choose the radius given by

$$
R(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}
$$

Since we want to find the radius at $t=2$, and we are using a third order polynomial, we need to choose the four points closest to $t=2$ and that also bracket $t=2$ to evaluate it.

The four points are $t_{0}=1.0, t_{1}=1.5, t_{2}=2.0$, and $t_{3}=2.5$.
(Note: Choosing $t_{0}=1.5, t_{1}=2.0, t_{2}=2.5$, and $t_{3}=3.0$ is equally valid.)

$$
\begin{array}{ll}
t_{o}=1.0, & R\left(t_{0}\right)=0.667 \\
t_{1}=1.5, & R\left(t_{1}\right)=1.225 \\
t_{2}=2.0, & R\left(t_{2}\right)=1.886 \\
t_{3}=2.5, & R\left(t_{3}\right)=2.635
\end{array}
$$

Example 2-Direct Fit Polynomials cont.

such that

$$
\begin{aligned}
& R(1.0)=0.667=a_{0}+a_{1}(1.0)+a_{2}(1.0)^{2}+a_{3}(1.0)^{3} \\
& R(1.5)=1.225=a_{0}+a_{1}(1.5)+a_{2}(1.5)^{2}+a_{3}(1.5)^{3} \\
& R(2.0)=1.886=a_{0}+a_{1}(2.0)+a_{2}(2.0)^{2}+a_{3}(2.0)^{3} \\
& R(2.5)=2.635=a_{0}+a_{1}(2.5)+a_{2}(2.5)^{2}+a_{3}(2.5)^{3}
\end{aligned}
$$

Writing the four equations in matrix form, we have

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1.5 & 2.25 & 3.375 \\
1 & 2 & 4 & 8 \\
1 & 2.5 & 6.25 & 15.625
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
0.667 \\
1.225 \\
1.886 \\
2.635
\end{array}\right]
$$

Example 2-Direct Fit Polynomials cont.

Solving the above four equations gives

$$
\begin{aligned}
a_{0} & =-0.080000 \\
a_{1} & =0.47100 \\
a_{2} & =0.29599 \\
a_{3} & =-0.020000
\end{aligned}
$$

Hence

$$
\begin{aligned}
R(t) & =a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3} \\
& =-0.080000+0.47100 t+0.29599 t^{2}-0.020000 t^{3}, \quad 1 \leq t \leq 2.5
\end{aligned}
$$

Example 2-Direct Fit Polynomials cont.

Figure 2 Graph of radius vs. time.

Example 2-Direct Fit Polynomials cont.

The derivative of radius at $\mathrm{t}=2$ is given by

Given that

$$
R^{\prime}(2)=\left.\frac{d}{d t} R(t)\right|_{t=2}
$$

$$
\begin{aligned}
R(t) & =-0.080000+0.47100 t+0.29599 t^{2}-0.020000 t^{3}, \quad 1 \leq t \leq 2.5 \\
R^{\prime}(t) & =\frac{d}{d t} R(t) \\
& =\frac{d}{d t}\left(-0.080000+0.47100 t+0.29599 t^{2}-0.020000 t^{3}\right) \\
& =0.47100+0.59180 t-0.060000 t^{2}, \quad 1 \leq t \leq 2.5 \\
R^{\prime}(2) & =0.47100+0.59180(2)-0.060000(2)^{2} \\
& =1.415 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Example 2-Direct Fit Polynomials cont.

(b) Area $=\pi R^{2}$

Time $\quad t(\mathrm{~s})$	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
Area $A\left(\mathrm{~m}^{2}\right)$	0	0.17497	1.3977	4.7144	11.175	21.813	37.697	59.857	89.350

For the third order polynomial (also called cubic interpolation), we choose the area given by $\quad A(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}$
Since we want to find the area at $t=2$, and we are using a third order polynomial, we need to choose the four points closest to $t=2$ and that also bracket $t=2$ to evaluate it.

The four points are $t_{0}=1.0, t_{1}=1.5, t_{2}=2.0$, and $t_{3}=2.5$.
(Note: Choosing $t_{0}=1.5, t_{1}=2.0, t_{2}=2.5$, and $t_{3}=3.0$ is equally valid.)

$$
\begin{aligned}
& t_{o}=1.0, \quad A\left(t_{o}\right)=1.3977 \\
& t_{1}=1.5, \quad A\left(t_{1}\right)=4.7144 \\
& t_{2}=2.0, \quad A\left(t_{2}\right)=11.175 \\
& t_{3}=2.5, \quad A\left(t_{3}\right)=21.813
\end{aligned}
$$

Example 2-fit Direct Ploynomials cont.

such that

$$
\begin{aligned}
& A(1.0)=1.3977=a_{0}+a_{1}(1.0)+a_{2}(1.0)^{2}+a_{3}(1.0)^{3} \\
& A(1.5)=4.7144=a_{0}+a_{1}(1.5)+a_{2}(1.5)^{2}+a_{3}(1.5)^{3} \\
& A(2.0)=11.175=a_{0}+a_{1}(2.0)+a_{2}(2.0)^{2}+a_{3}(2.0)^{3} \\
& A(2.5)=21.813=a_{0}+a_{1}(2.5)+a_{2}(2.5)^{2}+a_{3}(2.5)^{3}
\end{aligned}
$$

Writing the four equations in matrix form, we have

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1.5 & 2.25 & 3.375 \\
1 & 2 & 4 & 8 \\
1 & 2.5 & 6.25 & 15.625
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
1.3977 \\
4.7144 \\
11.175 \\
21.813
\end{array}\right]
$$

Example 2- Direct Fit polynomials cont.

Solving the above four equations gives

$$
\begin{aligned}
& a_{0}=0.057900 \\
& a_{1}=-0.12075 \\
& a_{2}=0.081468 \\
& a_{3}=1.3790
\end{aligned}
$$

Hence

$$
\begin{aligned}
A(t) & =a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3} \\
& =0.057900-0.12075 t+0.081468 t^{2}+1.3790 t^{3}, \quad 1 \leq t \leq 2.5
\end{aligned}
$$

Example 2-Direct Fit Polynomials cont.

Area vs Time

Figure 3 Graph of area vs. time.

Example 2- Direct Fit Polynomial cont

The derivative of radius at $\mathrm{t}=2$ is given by

Given that

$$
A^{\prime}(2)=\left.\frac{d}{d t} E(t)\right|_{t=2}
$$

$$
\begin{aligned}
A(t) & =0.057900-0.12075 t+0.081468 t^{2}+1.3790 t^{3}, \quad 1 \leq t \leq 2.5 \\
A^{\prime}(t) & =\frac{d}{d t} A(t) \\
& =\frac{d}{d t}\left(=0.057900-0.12075 t+0.081468 t^{2}+1.3790 t^{3}\right) \\
& =-0.12075+0.16294 t+4.1371 t^{2}, \quad 1 \leq t \leq 2.5 \\
A^{\prime}(2) & =-0.12075+0.16294(2)+4.1371(2)^{2} \\
& =16.754 \mathrm{~m}^{2} / \mathrm{s}
\end{aligned}
$$

Lagrange Polynomial

In this method, given $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, one can fit a $(n-1)^{h}$ order Lagrangian polynomial given by

$$
f_{n}(x)=\sum_{i=0}^{n} L_{i}(x) f\left(x_{i}\right)
$$

where ' n ' in $f_{n}(x)$ stands for the $n^{\text {th }}$ order polynomial that approximates the function $y=f(x)$ given at $(n+1)$ data points as $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots \ldots,\left(x_{n-1}, y_{n-1}\right),\left(x_{n}, y_{n}\right)$, and

$$
L_{i}(x)=\prod_{\substack{j=0 \\ j \neq i}}^{n} \frac{x-x_{j}}{x_{i}-x_{j}}
$$

$L_{i}(x)$ a weighting function that includes a product of $(n-1)$ terms with terms of $j=i$ omitted.

Lagrange Polynomial Cont.

Then to find the first derivative, one can differentiate $f_{n}(x)$ once, and so on for other derivatives.

For example, the second order Lagrange polynomial passing through
$\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ is
$f_{2}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} f\left(x_{0}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} f\left(x_{1}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} f\left(x_{2}\right)$
Differentiating equation (2) gives

Lagrange Polynomial Cont.

$$
f_{2}^{\prime}(x)=\frac{2 x-\left(x_{1}+x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} f\left(x_{0}\right)+\frac{2 x-\left(x_{0}+x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} f\left(x_{1}\right)+\frac{2 x-\left(x_{0}+x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} f\left(x_{2}\right)
$$

Differentiating again would give the second derivative as

$$
f_{2}^{\prime \prime}(x)=\frac{2}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} f\left(x_{0}\right)+\frac{2}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} f\left(x_{1}\right)+\frac{2}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} f\left(x_{2}\right)
$$

Example 3

A new fuel for recreational boats being developed at the local university was tested at an are pond by a team of engineers. The interest is to document the environmental impact of the fuel - how quickly does the slick spread? Table 3 shows the video camera record of the radius of the wave generated by a drop of the fuel that fell into the pond. Using the data
(a)Compute the rate at which the radius of the drop was changing at $t=2$.
(b)Estimate the rate at which the area of the contaminant was spreading across the pond at $t=2$.

Table 3 Radius as a function of time.

Time $t(\mathrm{~s})$	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
Radius $R(\mathrm{~m})$	0	0.236	0.667	1.225	1.886	2.635	3.464	4.365	5.333

Use second order Lagrangian polynomial interpolation to solve the problem.

Example 3 Cont.

Solution:

(a) For second order Lagrangian polynomial interpolation, we choose the radius given by

$$
R(t)=\left(\frac{t-t_{1}}{t_{0}-t_{1}}\right)\left(\frac{t-t_{2}}{t_{0}-t_{2}}\right) R\left(t_{0}\right)+\left(\frac{t-t_{0}}{t_{1}-t_{0}}\right)\left(\frac{t-t_{2}}{t_{1}-t_{2}}\right) R\left(t_{1}\right)+\left(\frac{t-t_{0}}{t_{2}-t_{0}}\right)\left(\frac{t-t_{1}}{t_{2}-t_{1}}\right) R\left(t_{2}\right)
$$

Since we want to find the radius at $t=2$, and we are using a second order Lagrangian polynomial, we need to choose the three points closest to $t=2$ that also bracket $t=2$ to evaluate it.
The three points are $t_{0}=1.5, t_{1}=2.0$, and $t_{2}=2.5$.
Differentiating the above equation gives
$R^{\prime}(t)=\frac{2 t-\left(t_{1}+t_{2}\right)}{\left(t_{0}-t_{1}\right)\left(t_{0}-t_{2}\right)} R\left(t_{0}\right)+\frac{2 t-\left(t_{0}+t_{2}\right)}{\left(t_{1}-t_{0}\right)\left(t_{1}-t_{2}\right)} R\left(t_{1}\right)+\frac{2 t-\left(t_{0}+t_{1}\right)}{\left(t_{2}-t_{0}\right)\left(t_{2}-t_{1}\right)} R\left(t_{2}\right)$
Hence,

$$
\begin{aligned}
R^{\prime}(2) & =\frac{2(2)-(2.0+2.5)}{(1.5-2.0)(1.5-2.5)}(1.225)+\frac{2(2)-(1.5+2.5)}{(2.0-1.5)(2.0-2.5)}(1.886)+\frac{2(2)-(1.5+2.0)}{(2.5-1.5)(2.5-2.0)}(2.635) \\
& =1.4100 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Example 3 Cont.

(b) Area $=\pi R^{2}$

Time $t(\mathrm{~s})$	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
Area $A(\mathrm{~m})$	0	0.17497	1.3977	4.7144	11.175	21.813	37.697	59.857	89.350

For second order Lagrangian polynomial interpolation, we choose the area given by

$$
A(t)=\left(\frac{t-t_{1}}{t_{0}-t_{1}}\right)\left(\frac{t-t_{2}}{t_{0}-t_{2}}\right) A\left(t_{0}\right)+\left(\frac{t-t_{0}}{t_{1}-t_{0}}\right)\left(\frac{t-t_{2}}{t_{1}-t_{2}}\right) A\left(t_{1}\right)+\left(\frac{t-t_{0}}{t_{2}-t_{0}}\right)\left(\frac{t-t_{1}}{t_{2}-t_{1}}\right) A\left(t_{2}\right)
$$

Example 3 Cont.

Since we want to find the area at $t=2$, and we are using a second order Lagrangian polynomial, we need to choose the three points closest to $t=2$ that also brackets $t=2$ to evaluate it.
The three points are $t_{0}=1.5, t_{1}=2.0$, and $t_{2}=2.5$.
Differentiating the above equation gives

$$
A^{\prime}(t)=\frac{2 t-\left(t_{1}+t_{2}\right)}{\left(t_{0}-t_{1}\right)\left(t_{0}-t_{2}\right)} A\left(t_{0}\right)+\frac{2 t-\left(t_{0}+t_{2}\right)}{\left(t_{1}-t_{0}\right)\left(t_{1}-t_{2}\right)} A\left(t_{1}\right)+\frac{2 t-\left(t_{0}+t_{1}\right)}{\left(t_{2}-t_{0}\right)\left(t_{2}-t_{1}\right)} A\left(t_{2}\right)
$$

Hence

$$
\begin{aligned}
A^{\prime}(2)= & \frac{2(2)-(2.0+2.5)}{(1.5-2.0)(1.5-2.5)}(4.7144)+\frac{2(2)-(1.5+2.5)}{(2.0-1.5)(2.0-2.5)}(11.175)+\frac{2(2)-(1.5+2.0)}{(2.5-1.5)(2.5-2.0)}(21.813) \\
& =17.099 \mathrm{~m}^{2} / \mathrm{s}
\end{aligned}
$$

Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit
http://numericalmethods.eng.usf.edu/topics/discrete_02 dif.html

THE END

http:// numericalmethods.eng.usf.edu

