Direct Method of Interpolation

Chemical Engineering Majors

Authors: Autar Kaw, Jai Paul

http://numericalmethods.eng.usf.edu

Transforming Numerical Methods Education for STEM Undergraduates

Direct Method of Interpolation

http://numericalmethods.eng.usf.edu

What is Interpolation?

Given (x_0,y_0) , (x_1,y_1) , (x_n,y_n) , find the value of 'y' at a value of 'x' that is not given.

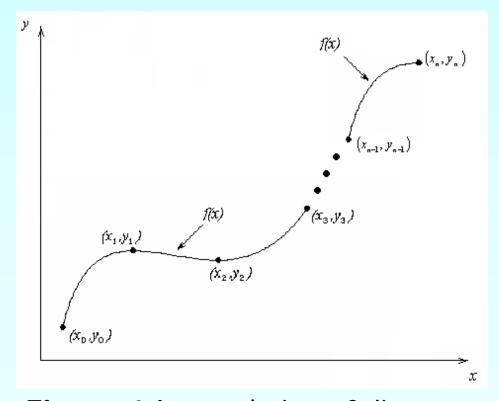


Figure 1 Interpolation of discrete.

Interpolants

Polynomials are the most common choice of interpolants because they are easy to:

- Evaluate
- Differentiate, and
- Integrate

Direct Method

Given 'n+1' data points (x_0,y_0) , (x_1,y_1) ,..... (x_n,y_n) , pass a polynomial of order 'n' through the data as given below:

$$y = a_0 + a_1 x + \dots + a_n x^n$$
.

where a_0 , a_1 ,..... a_n are real constants.

- Set up 'n+1' equations to find 'n+1' constants.
- To find the value 'y' at a given value of 'x', simply substitute the value of 'x' in the above polynomial.

Example

To find how much heat is required to bring a kettle of water to its boiling point, you are asked to calculate the specific heat of water at 61° C. The specific heat of water is given as a function of time in Table 1. Use linear, quadratic and cubic interpolation to determine the value of the specific heat at T = 61° C.

Table 1 Specific heat of water as a function of temperature.

Temperature, T (°C)	Specific heat, $C_{p}\left(\frac{J}{\text{kg}-\text{°C}}\right)$	
22	4181	
42	4179	
52	4186	
82	4199	
100	4217	

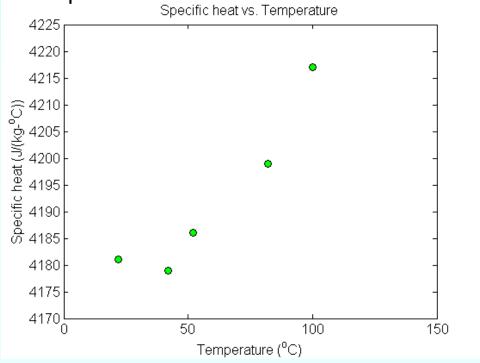


Figure 2 Specific heat of water vs. temperature.

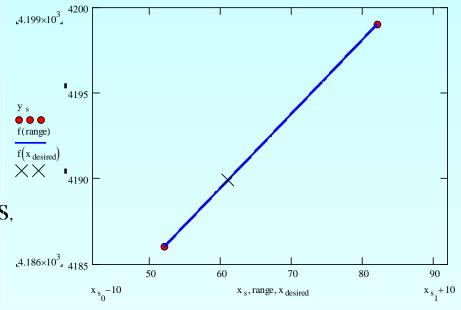
Linear Interpolation

$$C_p(T) = a_0 + a_1 T$$

 $C_p(52) = a_0 + a_1(52) = 4186$
 $C_p(82) = a_0 + a_1(82) = 4199$

Solving the above two equations gives,

$$a_0 = 4163.5$$
 $a_1 = 0.43333$



Hence

$$C_p(T) = 4163.5 + 0.43333T, 52 \le T \le 82.$$

$$C_p(61) = 4163.5 + 0.43333(61) = 4189.9 \frac{J}{kg - C}$$

Quadratic Interpolation

$$C_p(T) = a_0 + a_1 T + a_2 T^2$$

$$Cp(42) = a_0 + a_1 (42) + a_2 (42)^2 = 4179$$

$$Cp(52) = a_0 + a_1 (52) + a_2 (52)^2 = 4186$$

$$Cp(82) = a_0 + a_1 (82) + a_2 (82)^2 = 4199$$

Solving the above three equations gives

$$a_0 = 4135.0$$
 $a_1 = 1.3267$ $a_2 = -6.6667 \times 10^{-3}$

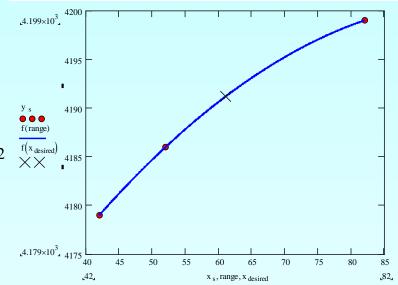
Quadratic Interpolation (contd)

$$C_p(T) = 4135.0 + 1.3267T - 6.6667 \times 10^{-3} T^2,$$

 $42 \le T \le 82$

$$C_p(61) = 4135.0 + 1.3267(61) - 6.6667 \times 10^{-3}(61)^2$$

= $4191.2 \frac{J}{k\alpha - {}^{\circ}C}$



The absolute relative approximate error obtained between the results from the first and second order polynomial is

$$\left| \in_a \right| = \left| \frac{4191.2 - 4189.9}{4191.2} \right| \times 100 = 0.030063\%$$

Cubic Interpolation

$$C_p(T) = a_0 + a_1 T + a_2 T^2 + a_3 T^3$$

$$Cp(42) = a_0 + a_1(42) + a_2(42)^2 + a_3(42)^3 = 4179$$

$$Cp(52) = a_0 + a_1(52) + a_2(52)^2 + a_3(52)^3 = 4186$$

$$Cp(82) = a_0 + a_1(82) + a_2(82)^2 + a_3(82)^3 = 4199$$

$$Cp(100) = a_0 + a_1(100) + a_2(100)^2 + a_3(100)^3 = 4217$$

$$a_0 = 4078.0$$
 $a_1 = 4.4771$ $a_2 = -0.062720$ $a_3 = 3.1849 \times 10^{-4}$

Cubic Interpolation (contd)

$$Cp(T) = 4078 + 4.4771T - 0.06272T^{2} + 3.1849 \times 10^{-4}T^{3},$$

$$42 \le T \le 100$$

$$T(61) = 4078 + 4.4471(61) - 0.06272(61)^{2} + 3.1849 \times 10^{-4}(61)^{3}$$

$$= 4191.0 \frac{J}{kg - {}^{\circ}C}$$

4210

4210

4210

4210

4210

4210

4210

4210

4210

4210

4210

4210

4210

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

4200

$$^$$

The absolute relative approximate error obtained between the results from the first and second order polynomial is

$$\left| \in_a \right| = \left| \frac{4190.0 - 4191.2}{4190.0} \right| \times 100 = 0.027295\%$$

Comparison Table

Order of Polynomial	1	2	3
$C_p(T) \frac{J}{kg - C}$	4189.9	4191.2	4190.0
Absolute Relative Approximate Error		0.030063%	0.027295%

Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

http://numericalmethods.eng.usf.edu/topics/direct_method.html

THE END

http://numericalmethods.eng.usf.edu