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Chapter 08.02 
Euler’s Method for Ordinary Differential Equations

After reading this chapter, you should be able to:
1. develop Euler’s Method for solving ordinary differential equations,

2. determine how the step size affects the accuracy of a solution,

3. derive Euler’s formula from Taylor series, and
4. use Euler’s method to find approximate values of integrals.
What is Euler’s method?

Euler’s method is a numerical technique to solve ordinary differential equations of the form
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So only first order ordinary differential equations can be solved by using Euler’s method.  In another chapter we will discuss how Euler’s method is used to solve higher order ordinary differential equations or coupled (simultaneous) differential equations.  How does one write a first order differential equation in the above form?

Example 1 

Rewrite
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Solution
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In this case
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Example 2

Rewrite
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Solution
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In this case
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Derivation of Euler’s method
At 
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	Figure 1  Graphical interpretation of the first step of Euler’s method.


So the slope at 
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Slope 
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From here
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Calling 
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One can now use the value of 
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Based on the above equations, if we now know the value of 
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This formula is known as Euler’s method and is illustrated graphically in Figure 2.  In some books, it is also called the Euler-Cauchy method.
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	Figure 2 General graphical interpretation of Euler’s method. 


Example 3
The concentration of salt 
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 in a home made soap maker is given as a function of time by
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At the initial time, 
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, the salt concentration in the tank is 50 g/L.  Using Euler’s method and a step size of 
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Solution
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The Euler’s method reduces to
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Figure 3 compares the exact solution with the numerical solution from Euler’s method for the step size of 
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	       Figure 3  Comparing exact and Euler’s method.
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The problem was solved again using smaller step sizes.  The results are given below in

Table 1.

Table 1  Concentration of salt at 3 minutes as a function of step size, 
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Figure 4 shows how the concentration of salt varies as a function of time for different step sizes.
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	Figure 4  Comparison of Euler’s method with exact solution for different step sizes.

	


While the values of the calculated concentration of salt at 
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as a function of step size are plotted in Figure 5.
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	          Figure 5  Effect of step size in Euler’s method.

	


The exact solution of the ordinary differential equation is given by 
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The solution to this nonlinear equation at 
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Can one solve a definite integral using numerical methods such as Euler’s method of solving ordinary differential equations?

Let us suppose you want to find the integral of a function 
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Both fundamental theorems of calculus would be used to set up the problem so as to solve it as an ordinary differential equation.

The first fundamental theorem of calculus states that if 
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The second fundamental theorem of calculus states that if 
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at each point in 
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Asked to find
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, we can rewrite the integral as the solution of an ordinary differential equation (here is where we are using the second fundamental theorem of calculus)
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 (here is where we are using the first fundamental theorem of calculus) will give the value of the integral 
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Example 4

Find an approximate value of 
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using Euler’s method of solving an ordinary differential equation.  Use a step size of 
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Solution

Given 
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, we can rewrite the integral as the solution of an ordinary differential equation
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The Euler’s method equation is
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Step 1 
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Step 2
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