
 
 
 
 
 
 
 
Chapter 06.02 
Introduction of Regression Analysis 
 
After reading this chapter, you should be able to: 
 

1. know what regression analysis is, 
2. know the effective use of regression, and  
3. enumerate uses and abuses of regression. 

 
What is regression analysis?  
 Regression analysis gives information on the relationship between a response 
(dependent) variable and one or more (predictor) independent variables to the extent that 
information is contained in the data. The goal of regression analysis is to express the 
response variable as a function of the predictor variables. The duality of fit and the accuracy 
of conclusion depend on the data used. Hence non-representative or improperly compiled 
data result in poor fits and conclusions. Thus, for effective use of regression analysis one 
must 

1. investigate the data collection process, 
2. discover any limitations in data collected, and 
3. restrict conclusions accordingly. 

 Once a regression analysis relationship is obtained, it can be used to predict values of 
the response variable, identify variables that most affect the response, or verify hypothesized 
causal models of the response. The value of each predictor variable can be assessed through 
statistical tests on the estimated coefficients (multipliers) of the predictor variables. 
 An example of a regression model is the linear regression model which is a linear 
relationship between response variable, y  and the predictor variable,  of the 
form 

nixi ...,2,1, =

 εββββ +++++= nn xxxy ...22110                              (1) 
where  

nβββ ......., 10  are regression coefficients (unknown model parameters), and 
ε  is the error due to variability in the observed responses. 

 
Example 1 
 In the transformation of raw or uncooked potato to cooked potato, heat is applied for 
some specific tune. One might postulate that the amount of untransformed portion of the 
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starch ( ) inside the potato is a linear function of time ( t ) and temperature (y θ ) of cooking. 
This is represented as 
 εθβββ +++= 210 ty                                (2) 
 Linear as used in linear regression refers to the form of occurrence of the unknown 
parameters, 1β  and 2β  as ,simple linear multipliers of the predictor variable. Thus, the two 
equations below are also both linear. 
 εθβθβββ ++++= 3210 tty                   (3) 
 εθβθββ +++= 210 ty         (4) 
 

Comparison of Regression and Correlation 
 Unlike regression, correlation analysis assesses the simultaneous variability of a 
collection of variables. The relationship is not directional and interest is not on how some 
variables respond to others but on how they are mutually associated. Thus, simultaneous 
variability of a collection of variables is referred to as correlation analysis. 
 
Uses of Regression Analysis 
Three uses for regression analysis are for  

1. prediction  
2. model specification and  
3. parameter estimation.  

 Regression analysis equations are designed only to make predictions. Good 
predictions will not be possible if the model is not correctly specified and accuracy of the 
parameter not ensured.  However, accurate prediction and model specification require that all 
relevant variables be accounted for in the data and the prediction equation be defined in the 
correct functional form for all predictor variables. 
 Parameter estimation is the most difficult to perform because not only is the model 
required to be correctly specified, the prediction must also be accurate and the data should 
allow for good estimation. For example, multicolinearity creates a problem and requires that 
some estimators may not be used. Thus, limitations of data and inability to measure all 
predictor variables relevant in a study restrict the use of prediction equations. 
 
Abuses of Regression Analysis 
Let us examine three common abuses of regression analysis. 

1. Extrapolation  
2. Generalization 
3. Causation 

 

Extrapolation 

 If you were dealing in the stock market or even interested in it, then you might 
remember the stock market crash of March 2000. During 1997-1999, investors thought they 
would double their money every year. They started buying fancy cars and houses on credit, 
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and living the high life. Little did they know that the whole market was hyped on speculation 
and little economic sense.  The Enron and MCI financial fiascos soon followed.   
 Let us look if we could have safely extrapolated the NASDAQ index1 from past 
years. Below is the table of NASDAQ index, , as a function of end of year number, t  
(Year 1 is the end of year 1994, and Year 6 is the end of year 1999). 

S

 
Table 1 NASDAQ index as a function of year number. 

Year Number ( t ) NASDAQ Index ( )S
1 (1994) 752 
2 (1995) 1052 
3 (1996) 1291 
4 (1997) 1570 
5 (1998) 2193 
6 (1999) 4069 

         

S = 168.14t2 - 597.35t + 1361.8
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 Figure 1 The regression line of NASDAQ Index as a function of year number. 
 
A relationship  between the NASDAQ index, , and the year number, t , 
is developed using least square regression and is found to be .  
The data and the regression line are shown in Figure 1.  The data is given only for Years 1 
through 6 and it is desired to calculate the value for .  This is extrapolation outside the 
model data. The error inherent in this model is shown in Table 2 and Figure 2.  Look at the 

2
210 tataaS ++= S

8.136137.59714.168 2 +−= ttS

6>t

                                                 
 
 
 
 
 
 
1 NASDAQ (National Association of Securities Dealers Automated Quotations) index is a composite index 
based on the stock market value of 3,000 companies. The NASDAQ index began on February 5, 1971 with a 
base value of 100. Twenty years later in 1995, NASDAQ index crossed the 1000 mark. It rose as high as 5132 
on March 10, 2000 and currently is at a value of 2282 (February 19, 2006). 
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Year 7 and 8 that was not included in the data – the error between the predicted and actual 
values is 119% and 277%, respectively.   
 
Table 2 NASDAQ index as a function of year number. 

Year  
Number ( ) t

NASDAQ 
Index ( )S

Predicted 
Index 

Absolute Relative  
True Error (%) 

1 (1994) 752 933 24 
2 (1995) 1052 840 20 
3 (1996) 1291 1083 16 
4 (1997) 1570 1663 6 
5 (1998) 2193 2579 18 
6  (1999) 4069 3831 6 
7 (2000) 2471 5419 119 
8 (2001) 1951 7344 276 

  
This illustration is not exaggerated and it is important that a careful use of any given 

model equations is always employed.  At all times, it is imperative to infer the domain of 
independent variables for which a given equation is valid. 
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            Figure 2  Extrapolated curve and actual data for Years 7 and 8. 

  
Generalization 
 Generalization could arise when unsupported or over exaggerated claims are made.  It 
is not often possible to measure all predictor variables relevant in a study.  For example, a 
study carried out about the behavior of men might have inadvertently restricted the survey to 
Caucasian men only.  Shall we then generalize the result as the attributes of all men 
irrespective of race?  Such use of regression equation is an abuse since the limitations 
imposed by the data restrict the use of the prediction equations to Caucasian men. 
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Misidentification 
 Finally, misidentification of causation is a classic abuse of regression analysis 
equations.  Regression analysis can only aid in the confirmation or refutation of a causal 
model - the model must however have a theoretical basis.  In a chemical reacting system in 
which two species react to form a product, the amount of product formed or amount of 
reacting species vary with time.  Although a regression equation of species concentration and 
time can be obtained, one cannot attribute time as the causal agent for the varying species 
concentration.  Regression analysis cannot prove causality, rather it can only substantiate or 
contradict causal assumptions.  Anything outside this is an abuse of regression analysis 
method. 
 
Least Squares Methods 
 This is the most popular method of parameter estimation for coefficients of regression 
models. It has well known probability distributions and gives unbiased estimators of 
regression parameters with the smallest variance.   
 We wish to predict the response to  data points  by a 
regression model given by 

n ),(),......,,(),,( 2211 nn yxyxyx

          (6) )(xfy =
where, the function  has regression constants that need to be estimated.   )(xf
 For example  
  is a straight-line regression model with constants and  xaaxf 10)( += 0a 1a

xaeaxf 1
0)( = is an exponential model with constants and  0a 1a

 is a quadratic model with constants ,  and  2
210)( xaxaaxf ++= 0a 1a 2a

 A measure of goodness of fit, that is how the regression model  predicts the 
response variable 

)(xf
y  is the magnitude of the residual,  at each of the  data points. iE n

                    (7) nixfyE iii ,....2,1),( =−=
Ideally, if all the residuals  are zero, one may have found an equation in which iE
all the points lie on a model. Thus, minimization of the residual is an objective of obtaining 
regression coefficients.  In the least squares method, estimates of the constants of the models 
are chosen such that minimization of the sum of the squared residuals is achieved, that is 

minimize .  ∑
=

n

i
iE

1

2

 
Why minimize the sum of the square of the residuals?  

 Why not for instance minimize the sum of the residual errors, , or the sum of 

the absolute values of the residuals, 

∑
=

n

i
iE

1

∑
=

n

i
iE

1
? Alternatively, constants of the model can be 

chosen such that the average residual is zero without making individual residuals small. Will 
any of these criteria yield unbiased parameters with the smallest variance? All of these 
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questions will be answered when we discuss linear regression in the next chapter (Chapter 
06.03). 
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