Simpson's 1/3rd Rule of Integration Civil Engineering Majors Authors: Autar Kaw, Charlie Barker http://numericalmethods.eng.usf.edu Transforming Numerical Methods Education for STEM Undergraduates # Simpson's 1/3rd Rule of Integration http://numericalmethods.eng.usf.edu ### What is Integration? #### Integration The process of measuring the area under a curve. $$I = \int_{a}^{b} f(x) dx$$ Where: f(x) is the integrand a= lower limit of integration b= upper limit of integration ### Simpson's 1/3rd Rule Trapezoidal rule was based on approximating the integrand by a first order polynomial, and then integrating the polynomial in the interval of integration. Simpson's 1/3rd rule is an extension of Trapezoidal rule where the integrand is approximated by a second order polynomial. Hence $$I = \int_{a}^{b} f(x) dx \approx \int_{a}^{b} f_{2}(x) dx$$ Where $f_2(x)$ is a second order polynomial. $$f_2(x) = a_0 + a_1 x + a_2 x^2$$ Choose $$(a, f(a)), \left(\frac{a+b}{2}, f\left(\frac{a+b}{2}\right)\right), \text{ and } (b, f(b))$$ as the three points of the function to evaluate a_0 , a_1 and a_2 . $$f(a) = f_2(a) = a_0 + a_1 a + a_2 a^2$$ $$f\left(\frac{a+b}{2}\right) = f_2\left(\frac{a+b}{2}\right) = a_0 + a_1\left(\frac{a+b}{2}\right) + a_2\left(\frac{a+b}{2}\right)^2$$ $$f(b) = f_2(b) = a_0 + a_1b + a_2b^2$$ Solving the previous equations for a_0 , a_1 and a_2 give $$a_{0} = \frac{a^{2} f(b) + abf(b) - 4abf\left(\frac{a+b}{2}\right) + abf(a) + b^{2} f(a)}{a^{2} - 2ab + b^{2}}$$ $$a_{1} = -\frac{af(a) - 4af\left(\frac{a+b}{2}\right) + 3af(b) + 3bf(a) - 4bf\left(\frac{a+b}{2}\right) + bf(b)}{a^{2} - 2ab + b^{2}}$$ $$a_{2} = \frac{2\left(f(a) - 2f\left(\frac{a+b}{2}\right) + f(b)\right)}{a^{2} - 2ab + b^{2}}$$ Then $$I \approx \int_{a}^{b} f_{2}(x) dx$$ $$= \int_{a}^{b} (a_{0} + a_{1}x + a_{2}x^{2}) dx$$ $$= \left[a_{0}x + a_{1}\frac{x^{2}}{2} + a_{2}\frac{x^{3}}{3} \right]_{a}^{b}$$ $$= a_{0}(b - a) + a_{1}\frac{b^{2} - a^{2}}{2} + a_{2}\frac{b^{3} - a^{3}}{3}$$ ### Basis of Simpson's 1/3rd Rule Substituting values of a₀, a₁, a₂ give $$\int_{a}^{b} f_{2}(x) dx = \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$ Since for Simpson's 1/3rd Rule, the interval [a, b] is broken into 2 segments, the segment width $$h = \frac{b - a}{2}$$ Hence $$\int_{a}^{b} f_{2}(x) dx = \frac{h}{3} \left[f(a) + 4f \left(\frac{a+b}{2} \right) + f(b) \right]$$ Because the above form has 1/3 in its formula, it is called Simpson's 1/3rd Rule. ### Example 1 The concentration of benzene at a critical location is given by $$c = 1.75 \left[erfc(0.6560) + e^{32.73} erfc(5.758) \right]$$ where $$erfc(x) = \int_{-\infty}^{x} e^{-z^2} dz$$ So in the above formula $$erfc(0.6560) = \int_{0.6560}^{0.6560} e^{-z^2} dz$$ $erfc(0.6560) = \int_{\infty}^{0.6560} e^{-z^2} dz$ Since e^{-z^2} decays rapidly as $z \to \infty$, we will approximate $erfc(0.6560) = \int_{5}^{0.6560} e^{-z^2} dz$ $$erfc(0.6560) = \int_{5}^{\infty} e^{-z^2} dz$$ - Use Simpson 1/3rd rule to find the approximate value of *erfc*(0.6560). a) - Find the true error, E_t for part (a). - Find the absolute relative true error, $|\epsilon_a|$ for part (a). #### Solution a) $$erfc(0.6560) = \int_{5}^{0.6560} e^{-z^2} dz$$ $f(z) = e^{-z^2}$ $erfc(0.6560) \approx \left(\frac{b-a}{6}\right) \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b)\right]$ $= \left(\frac{0.6560 - 5}{6}\right) \left[f(5) + 4f(2.8280) + f(0.6560)\right]$ $= \left(\frac{-4.3440}{6}\right) \left[1.3888 \times 10^{-11} + 4\left(3.3627 \times 10^{-4}\right) + 0.65029\right]$ $= -0.47178$ #### Solution (cont) b) The exact value of the above integral cannot be found. We assume the value obtained by adaptive numerical integration using Maple as the exact value for calculating the true error and relative true error. $$erfc(0.6560) = \int_{5}^{0.6560} e^{-z^{2}} dz$$ $$= -0.31333$$ True Error $$E_{t} = True\ Value - Approximate\ Value$$ $$= -0.31333 - (-0.47178)$$ $$= 0.15846$$ ### Solution (cont) c) The absolute relative true error, $$\left| \in_{t} \right| = \left| \frac{\text{True Error}}{\text{True Value}} \right| \times 100$$ $$= \left| \frac{0.15846}{-0.31333} \right| \times 100$$ $$= 50.573\%$$ ### Multiple Segment Simpson's 1/3rd Rule Just like in multiple segment Trapezoidal Rule, one can subdivide the interval [a, b] into n segments and apply Simpson's 1/3rd Rule repeatedly over every two segments. Note that n needs to be even. Divide interval [a, b] into equal segments, hence the segment width $$h = \frac{b-a}{n} \qquad \int_{a}^{b} f(x)dx = \int_{x_0}^{x_n} f(x)dx$$ where $$x_0 = a$$ $x_n = b$ $$\int_{a}^{b} f(x)dx = \int_{x_{0}}^{x_{2}} f(x)dx + \int_{x_{2}}^{x_{4}} f(x)dx + \dots$$ $$\dots + \int_{a}^{x_{n-2}} f(x)dx + \int_{x_{2}}^{x_{n}} f(x)dx$$ Apply Simpson's 1/3rd Rule over each interval, $$\int_{a}^{b} f(x)dx = (x_{2} - x_{0}) \left[\frac{f(x_{0}) + 4f(x_{1}) + f(x_{2})}{6} \right] + \dots$$ $$+ (x_{4} - x_{2}) \left[\frac{f(x_{2}) + 4f(x_{3}) + f(x_{4})}{6} \right] + \dots$$... + $$(x_{n-2} - x_{n-4}) \left[\frac{f(x_{n-4}) + 4f(x_{n-3}) + f(x_{n-2})}{6} \right] + ...$$ $$+(x_n - x_{n-2}) \left[\frac{f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)}{6} \right]$$ Since $$x_i - x_{i-2} = 2h$$ $i = 2, 4, ..., n$ Then $$\int_{a}^{b} f(x)dx = 2h \left[\frac{f(x_{0}) + 4f(x_{1}) + f(x_{2})}{6} \right] + \dots$$ $$+ 2h \left[\frac{f(x_{2}) + 4f(x_{3}) + f(x_{4})}{6} \right] + \dots$$ $$+ 2h \left[\frac{f(x_{n-4}) + 4f(x_{n-3}) + f(x_{n-2})}{6} \right] + \dots$$ $$+ 2h \left[\frac{f(x_{n-2}) + 4f(x_{n-1}) + f(x_{n})}{6} \right]$$ $$\int_{a}^{b} f(x)dx = \frac{h}{3} \left[f(x_0) + 4 \left\{ f(x_1) + f(x_3) + \dots + f(x_{n-1}) \right\} + \dots \right]$$ $$\dots + 2 \left\{ f(x_2) + f(x_4) + \dots + f(x_{n-2}) \right\} + f(x_n) \right\}$$ $$= \frac{h}{3} \left[f(x_0) + 4 \sum_{\substack{i=1 \ i=odd}}^{n-1} f(x_i) + 2 \sum_{\substack{i=2 \ i=even}}^{n-2} f(x_i) + f(x_n) \right]$$ $$= \frac{b-a}{3n} \left[f(x_0) + 4 \sum_{\substack{i=1 \ i=odd}}^{n-1} f(x_i) + 2 \sum_{\substack{i=2 \ i=even}}^{n-2} f(x_i) + f(x_n) \right]$$ ### Example 2 The concentration of benzene at a critical location is given by $$c = 1.75 \left[erfc(0.6560) + e^{32.73} erfc(5.758) \right]$$ where $$erfc(x) = \int_{-\infty}^{x} e^{-z^2} dz$$ So in the above formula $$erfc(0.6560) = \int_{0.6560}^{0.6560} e^{-z^2} dz$$ $erfc(0.6560) = \int_{-\infty}^{0.6560} e^{-z^2} dz$ Since e^{-z^2} decays rapidly as $z \to \infty$, we will approximate $$erfc(0.6560) = \int_{5}^{0.6560} e^{-z^2} dz$$ - Use four segment Simpson's 1/3rd Rule to find the approximate value of a) erfc(0.6560). - Find the true error, E_{t} for part (a). - Find the absolute relative true error, $|\epsilon_a|$ for part (a). #### Solution a) Using n segment Simpson's 1/3rd Rule, $$h = \frac{b-a}{n} = \frac{0.6560 - 5}{4} = -1.0860$$ So $$f(z_0) = f(5)$$ $$f(z_1) = f(5 - 1.0860) = f(3.9140)$$ $$f(z_2) = f(3.9140 - 1.0860) = f(2.8280)$$ $$f(z_3) = f(2.8280 - 1.0860) = f(1.7420)$$ $$f(z_4) = f(0.6560)$$ ### Solution (cont.) $$erfc(0.6560) \approx \frac{b-a}{3n} \left[f(z_0) + 4 \sum_{i=1}^{n-1} f(z_i) + 2 \sum_{i=2}^{n-2} f(z_i) + f(z_n) \right]$$ $$= \frac{0.6560 - 5}{3(4)} \left[f(5) + 4 \sum_{i=0dd}^{3} f(z_i) + 2 \sum_{i=2ven}^{2} f(z_i) + f(0.6560) \right]$$ $$= \frac{-4.3440}{12} [f(5) + 4f(z_1) + 4f(z_3) + 2f(z_2) + f(0.6560)]$$ $$= \frac{-4.3440}{12} [f(5) + 4f(3.9140) + 4f(1.7420) + 2f(2.8280) + f(0.6560)]$$ $$= \frac{-4.3440}{12} [1.3888 \times 10^{-11} + 4(2.2226 \times 10^{-7}) + 4(0.048096) + 2(3.3627 \times 10^{-4}) + 0.65029]$$ $$= -0.30529$$ ### Solution (cont.) b) In this case, the true error is $$E_{t} = True\ Value - Approximate\ Value$$ = -0.31333 - (-0.30529) = -0.0080347 c) The absolute relative true error $$\left| \in_{t} \right| = \left| \frac{\text{True Error}}{\text{True Value}} \right| \times 100$$ $$= \left| \frac{-0.0080347}{-0.31333} \right| \times 100$$ $$= 2.5643\%$$ ### Solution (cont.) Table 1: Values of Simpson's 1/3rd Rule for Example 2 with multiple segments | | Approximate Value | $E_{_t}$ | $ \epsilon_{t} $ | |-----|-------------------|-------------|------------------| | 2 n | -0.47178 | 0.15846 | 50.573% | | 4 | -0.30529 | -0.0080347 | 2.5643% | | 6 | -0.30678 | -0.0065444 | 2.0887% | | 8 | -0.31110 | -0.0022249 | 0.71009% | | 10 | -0.31248 | -0.00084868 | 0.27086% | ### Error in the Multiple Segment Simpson's 1/3rd Rule The true error in a single application of Simpson's 1/3rd Rule is given as $$E_{t} = -\frac{(b-a)^{5}}{2880} f^{(4)}(\zeta), \quad a < \zeta < b$$ In Multiple Segment Simpson's 1/3rd Rule, the error is the sum of the errors in each application of Simpson's 1/3rd Rule. The error in n segment Simpson's 1/3rd Rule is given by $$E_{1} = -\frac{(x_{2} - x_{0})^{5}}{2880} f^{(4)}(\zeta_{1}) = -\frac{h^{5}}{90} f^{(4)}(\zeta_{1}), \quad x_{0} < \zeta_{1} < x_{2}$$ $$E_{2} = -\frac{(x_{4} - x_{2})^{5}}{2880} f^{(4)}(\zeta_{2}) = -\frac{h^{5}}{90} f^{(4)}(\zeta_{2}), \quad x_{2} < \zeta_{2} < x_{4}$$ by the Appendix Processing Free ### Error in the Multiple Segment Simpson's 1/3rd Rule $$E_{i} = -\frac{(x_{2i} - x_{2(i-1)})^{5}}{2880} f^{(4)}(\zeta_{i}) = -\frac{h^{5}}{90} f^{(4)}(\zeta_{i}), \quad x_{2(i-1)} < \zeta_{i} < x_{2i}$$ • • $$E_{\frac{n}{2}-1} = -\frac{(x_{n-2} - x_{n-4})^5}{2880} f^{(4)} \left(\zeta_{\frac{n}{2}-1}\right) = -\frac{h^5}{90} f^{(4)} \left(\zeta_{\frac{n}{2}-1}\right), \quad x_{n-4} < \zeta_{\frac{n}{2}-1} < x_{n-2}$$ $$E_{\frac{n}{2}} = -\frac{(x_n - x_{n-2})^5}{2880} f^4 \left(\zeta_{\frac{n}{2}}\right) = -\frac{h^5}{90} f^{(4)} \left(\zeta_{\frac{n}{2}}\right), \quad x_{n-2} < \zeta_{\frac{n}{2}} < x_n$$ ### Error in the Multiple Segment Simpson's 1/3rd Rule Hence, the total error in Multiple Segment Simpson's 1/3rd Rule is $$E_{t} = \sum_{i=1}^{\frac{n}{2}} E_{i} = -\frac{h^{5}}{90} \sum_{i=1}^{\frac{n}{2}} f^{(4)}(\zeta_{i}) = -\frac{(b-a)^{5}}{90n^{5}} \sum_{i=1}^{\frac{n}{2}} f^{(4)}(\zeta_{i})$$ $$= -\frac{(b-a)^5}{90n^4} \frac{\sum_{i=1}^{\frac{n}{2}} f^{(4)}(\zeta_i)}{n}$$ ### Error in the Multiple Segment Simpson's 1/3rd Rule The term $$\sum_{i=1}^{\frac{n}{2}} f^{(4)}(\zeta_i)$$ is an approximate average value of \boldsymbol{n} $$f^{(4)}(x), a < x < b$$ Hence $$E_t = -\frac{(b-a)^5}{90n^4} \overline{f}^{(4)}$$ where $$\overline{f}^{(4)} = \frac{\sum_{i=1}^{\frac{n}{2}} f^{(4)}(\zeta_i)}{n}$$ #### **Additional Resources** For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit http://numericalmethods.eng.usf.edu/topics/simpsons_13rd_rule.html ### THE END http://numericalmethods.eng.usf.edu