Runge 2nd Order Method

Civil Engineering Majors

Authors: Autar Kaw, Charlie Barker

http://numericalmethods.eng.usf.edu

Transforming Numerical Methods Education for STEM Undergraduates

Runge-Kutta 2nd Order Method

http://numericalmethods.eng.usf.edu

Runge-Kutta 2nd Order Method

For
$$\frac{dy}{dx} = f(x, y), y(0) = y_0$$

Runge Kutta 2nd order method is given by

$$y_{i+1} = y_i + (a_1k_1 + a_2k_2)h$$

$$k_1 = f(x_i, y_i)$$

$$k_2 = f(x_i + p_1 h, y_i + q_{11} k_1 h)$$

Heun's Method

Heun's method

Here $a_2 = 1/2$ is chosen

$$a_1 = \frac{1}{2}$$

$$p_1 = 1$$

$$q_{11} = 1$$

resulting in

$$y_{i+1} = y_i + \left(\frac{1}{2}k_1 + \frac{1}{2}k_2\right)h$$

$$k_1 = f(x_i, y_i)$$

$$k_2 = f(x_i + h, y_i + k_1 h)$$

Figure 1 Runge-Kutta 2nd order method (Heun's method)

Midpoint Method

Here $a_2 = 1$ is chosen, giving

$$a_1 = 0$$

$$p_1 = \frac{1}{2}$$

$$q_{11} = \frac{1}{2}$$

resulting in

$$y_{i+1} = y_i + k_2 h$$

$$k_1 = f(x_i, y_i)$$

 $k_2 = f\left(x_i + \frac{1}{2}h, y_i + \frac{1}{2}k_1h\right)$

Ralston's Method

Here
$$a_2 = \frac{2}{3}$$
 is chosen, giving

$$a_1 = \frac{1}{3}$$

$$p_1 = \frac{3}{4}$$

$$q_{11} = \frac{3}{4}$$

resulting in

$$y_{i+1} = y_i + \left(\frac{1}{3}k_1 + \frac{2}{3}k_2\right)h$$

$$k_1 = f(x_i, y_i)$$

$$k_2 = f\left(x_i + \frac{3}{4}h, y_i + \frac{3}{4}k_1h\right)$$

How to write Ordinary Differential Equation

How does one write a first order differential equation in the form of

$$\frac{dy}{dx} = f(x, y)$$

Example

$$\frac{dy}{dx} + 2y = 1.3e^{-x}, y(0) = 5$$

is rewritten as

$$\frac{dy}{dx} = 1.3e^{-x} - 2y, y(0) = 5$$

In this case

$$f(x,y) = 1.3e^{-x} - 2y$$

Example

A polluted lake with an initial concentration of a bacteria is 10^7 parts/m³, while the acceptable level is only 5×10^6 parts/m³. The concentration of the bacteria will reduce as fresh water enters the lake. The differential equation that governs the concentration \mathcal{C} of the pollutant as a function of time (in weeks) is given by

$$\frac{dC}{dt}$$
 + 0.06 C = 0, C (0) = 10^7

Find the concentration of the pollutant after 7 weeks. Take a step size of 3.5 weeks. $\frac{dC}{dt} = -0.06C$

at
$$f(t,C) = -0.06C$$

$$C_{i+1} = C_i + \left(\frac{1}{2}k_1 + \frac{1}{2}k_2\right)h$$

Solution

Step 1:
$$i = 0$$
, $t_0 = 0$, $C_0 = 10^7$

$$k_1 = f(t_0, C_0) = f(0.10^7) = -0.06(10^7) = -600000$$

$$k_2 = f(t_0 + h, C_0 + k_1 h) = f(0 + 3.5, 10^7 + (-600000)3.5)$$

= $f(3.5, 7.9 \times 10^6) = -0.06(7.9 \times 10^6) = -474000$

$$C_1 = C_0 + \left(\frac{1}{2}k_1 + \frac{1}{2}k_2\right)h$$

$$= 10^7 + \left(\frac{1}{2}(-600000) + \frac{1}{2}(-474000)\right)3.5$$

$$= 10^7 + (-537000)3.5$$

$$= 8.1205 \times 10^6 \text{ parts/m}^3$$

 C_1 is the approximate concentration of bacteria at $t = t_1 = t_0 + h = 0 + 3.5 = 3.5$ weeks $C(3.5) \approx C_1 = 8.1205 \times 10^6$ parts/m³

Solution Cont

Step 2:
$$i = 1$$
, $t_1 = t_0 + h = 0 + 3.5 = 3.5$, $C_1 = 8.1205 \times 10^6 \text{ parts/m}^3$
 $k_1 = f(t_1, C_1) = f(3.5, 8.1205 \times 10^6) = -0.06(8.1205 \times 10^6) = -487230$
 $k_2 = f(t_1 + h, C_1 + k_1 h) = f(3.5 + 3.5, 8.1205 \times 10^6 + (-487230)3.5)$
 $= f(7, 6415200) = -0.06(6415200) = -384910$

$$C_2 = C_1 + \left(\frac{1}{2}k_1 + \frac{1}{2}k_2\right)h$$

$$= 8.1205 \times 10^6 + \left(\frac{1}{2}(-487230) + \frac{1}{2}(-384910)\right)3.5$$

$$= 8.1205 \times 10^6 + (-436070)3.5$$

$$= 6.5943 \times 10^6 \text{ parts/m}^3$$

C₂ is the approximate concentration of bacteria at

$$t = t_2 = t_1 + h = 3.5 + 3.5 = 7$$
 weeks

$$C(7) \approx C_2 = 6.5943 \times 10^6 \text{ parts/m}^3$$

Solution Cont

The exact solution of the ordinary differential equation is given by the solution of a non-linear equation as

$$C(t) = 1 \times 10^7 e^{\left(\frac{-3t}{50}\right)}$$

The solution to this nonlinear equation at t=7 weeks is

$$C(7) = 6.5705 \times 10^6 \text{ parts/m}^3$$

Comparison with exact results

Figure 2. Heun's method results for different step sizes

Effect of step size

Table 1. Effect of step size for Heun's method

Step size, h	<i>C</i> (7)	E_t	$\mid \in_{t} \mid \%$
7	$6.6520 \ 10^6$	-111530	1.6975
3.5	$6.5943 \ 10^6$	-23784	0.36198
1.75	$6.5760 \ 10^6$	-5489.1	0.083542
0.875	$6.5718 ext{ } 10^6$	-1318.8	0.020071
0.4375	$6.5708 \ 10^6$	-323.24	0.0049195

$$C(7) = 6.5705 \times 10^6$$
 (exact)

Effects of step size on Heun's Method

Figure 3. Effect of step size in Heun's method

Comparison of Euler and Runge-Kutta 2nd Order Methods

Table 2. Comparison of Euler and the Runge-Kutta methods

Step size,	C(7)				
h	Euler	Heun	Midpoint	Ralston	
7 3.5	5.8000 10 ⁶ 6.2410 10 ⁶	$6.6820 \ 10^6$ $6.5943 \ 10^6$	$6.6820 \ 10^6$ $6.5943 \ 10^6$	$6.6820 \ 10^6$ $6.5943 \ 10^6$	
1.75 0.875 0.4375	6.4160 10 ⁶ 6.4960 10 ⁶ 6.5340 10 ⁶	$6.5760 10^6 $ $6.5718 10^6 $ $6.5708 10^6 $	6.5760 10 ⁶ 6.7518 10 ⁶ 6.5708 10 ⁶	$\begin{array}{cccc} 6.5760 & 10^6 \\ 6.5718 & 10^6 \\ 6.5708 & 10^6 \end{array}$	

$$C(7) = 6.5705 \times 10^6$$
 (exact)

Comparison of Euler and Runge-Kutta 2nd Order Methods

Table 2. Comparison of Euler and the Runge-Kutta methods

Step size,	$ \epsilon_t \%$				
h	Euler	Heun	Midpoint	Ralston	
7 3.5 1.75 0.875 0.4375	11.726 5.0144 2.3447 1.1362 0.55952	1.6975 0.36198 0.083542 0.020071 0.0049195	1.6975 0.36198 0.083542 0.020071 0.0049195	1.6975 0.36198 0.083542 0.020071 0.0049195	

$$C(7) = 6.5705 \times 10^6$$
 (exact)

Comparison of Euler and Runge-Kutta 2nd Order Methods

Figure 4. Comparison of Euler and Runge Kutta 2nd order methods with exact results.

Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

http://numericalmethods.eng.usf.edu/topics/runge_kutt
a_2nd_method.html

THE END

http://numericalmethods.eng.usf.edu