Runge 2" Order Method

Civil Engineering Majors
Authors: Autar Kaw, Charlie Barker

http://numericalmethods.eng.usf.edu

Transforming Numerical Methods Education for STEM
Undergraduates

1/10/2010 http://numericalmethods.eng.usf.edu


http://numericalmethods.eng.usf.edu/�

Runge-Kutta 2@ Order Method

http://numericalmethods.eng.usf.edu



http://numericalmethods.eng.usf.edu/�

Runge-Kutta 2"® Order Method
or = £(0,),9(0) = ¥,

Runge Kutta 2nd order method is given by

Yin=Yi (alkl +a,k, )h

where
ke = £ (%, Yi)

ky = f(Xi + prh, y; + Chlklh)



Heun’s Method

Heun's method , Slope = f(x, +h, y, + k)
Here a,=1/2 is chosen ! —v—>
1 yi., predicted
a) == ”
2
pp=1 :
i1 = 1 ; Average Slope = %[f (x; +h,y, +kh)+ f(x;,y)]
v
resulting in
1 1
Yiaa =i +(§k1+§k2jh - — > x
where _
(= t(x.y,) Figure 1 Runge-Kutta 2nd order method (Heun’s method)
1 i1 Ji

k, = f(x, +h,y, +kh)
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Midpoint Method

Here a,=1 ischosen, giving
al = O
b=

Qi1 =

N~ NP

resulting in
Yit1 =i +Koh
where
k= £ 04, ¥i)
K, = f(xi +%h, y, +%klhj



Ralston’s Method

Here a -2 is chosen, giving
3

=L
3
3
Py = Z
3
O = Z
resulting in
Vi = Vi +(%kl +§k2)h
where
ky = (%, ¥;)

3 3
k,=f| x.+=h,y. +—=k,h
2 (I 4 yl 41j



How to write Ordinary Differential
Equation

How does one write a first order differential equation in the form of
dy

— = (x,

dx (xy)

Example

dy X
—+2y=13e"",y(0)=5
T2y y(0)

IS rewritten as

dy X
= —13e* -2y y(0)=5
L~ y, y(0)

In this case

f(x,y)=1.3e7% -2y



Example

A polluted lake with an initial concentration of a bacteria is 10
parts/m3, while the acceptable level is only 5x10° parts/m3. The
concentration of the bacteria will reduce as fresh water enters the
lake. The differential equation that governs the concentration C of

the pollutant as a function of time (in weeks) is given by
dC

~ - +0.06C =0,C(0) = 107

Find the concentration of the pollutant after 7 weeks. Take a

step size of 3.5 weeks.
P C(I:I—(t: = —0.06C

f(t,C)=-0.06C

C.,, =C, +(%kl +%k2jh

1+1



Solution
Step1l: i=0, t,=0, C, =10’
k, = f(t,,C,)= f(0,10")=-0.06(10" )= -600000

k2

f(t,+h, C,+kh)=f(0+3.5, 10" +(~600000)3.5)
£(3.5, 7.9x10°) = —0.06(7.9x10° )= —474000

C1:CO+(£k1+£k2jh _ _
2~ 2 C, is the approximate
concentration of bacteria at

t=t =t,+h=0+3.5=3.5weeks

=10" +(-537000)3.5 C(3.5)~C, =8.1205x10° parts/m°
=8.1205x10° parts/m®

=10" + (% (- 600000)+ % (- 474000))3.5
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Solution Cont

Step2: i=1 t =t,+h=0+35=3.5 C,=8.1205x10°parts/m’
k, = f(t,C,)= (3.5, 8.1205x10° )= —-0.06(8.1205x 10° )= 487230

k,= f(t,+h,C,+kh)= f(3.5+35, 8.1205x10°+(~487230)3.5)
= (7, 6415200)=—0.06(6415200)=—384910

1, 1
C2 :C1+(§kl +§k2jh
=8.1205x10° + @ (- 487230)+%(— 384910))3.5

C, is the approximate
concentration of bacteria at
t=t, =t +h=3.5+3.5=7weeks

=8.1205x10° + (- 436070)3.5
= 6.5943x10°parts/m*

C(7)~C, = 6.5943x10° parts/m’
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Solution Cont

The exact solution of the ordinary differential equation Is
given by the solution of a non-linear equation as

-3
C(t) = 1x1o7e(5_Otj

The solution to this nonlinear equation at t=7 weeks Is

C(7) =6.5705x10° parts/m’
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Comparison with exact results
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Figure 2. Heun’s method results for different step sizes



Effect of step size

Table 1. Effect of step size for Heun’s method

Step size, h C(7) E; .| %
{ 6.6520 10° —111530 1.6975
3.5 6.5943 10° —23784 0.36198
1.75 6.5760 10° —5489.1 0.083542
0.875 6.5718 10° —1318.8 0.020071
0.4375 6.5708 10° —323.24 | 0.0049195

C(7) — 65705X106 (exact)



14

Effects of step size on Heun'’s
Method
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Figure 3. Effect of step size in Heun’s method



Comparison of Euler and Runge-
Kutta 2"d Order Methods

Table 2. Comparison of Euler and the Runge-Kutta methods

15

Step size, C(7)
1 Euler Heun Midpoint Ralston
7 5.8000 10° 6.6820 106 6.6820 106 6.6820 106
3.5 6.2410 106 6.5943 10° 6.5943 106 6.5943 106
1.75 6.4160 106 6.5760 10° 6.5760 106 6.5760 106
0.875 6.4960 106 6.5718 106 6.7518 106 6.5718 10°
0.4375 6.5340 106 6.5708 106 6.5708 106 6.5708 106

C(7) =6.5705x10°

(exact)
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Comparison of Euler and Runge-

Kutta 2"d Order Methods

Table 2. Comparison of Euler and the Runge-Kutta methods

Step size, &%
! Euler Heun Midpoint Ralston
. 11726 1.6975 1.6975 1.6975
35 5.0144 0.36198 0.36198 0.36198
1.75 2.3447 0.083542 0.083542 0.083542
0.875 1.1362 0.020071 0.020071 0.020071
0.4375 055952 1 40049195 0.0049195 0.0049195

C(7) =6.5705x10° (exact)




Comparison of Euler and Runge-
Kutta 2"d Order Methods
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methods with exact results.
17



Additional Resources

For all resources on this topic such as digital audiovisual
lectures, primers, textbook chapters, multiple-choice
tests, worksheets in MATLAB, MATHEMATICA, MathCad
and MAPLE, blogs, related physical problems, please
visit

http://numericalmethods.eng.usf.edu/topics/runge_Kkutt
a_2nd_method.html
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