
Newton-Raphson Method

Electrical Engineering Majors

Authors: Autar Kaw, Jai Paul

http://numericalmethods.eng.usf.edu
Transforming Numerical Methods Education for STEM 

Undergraduates

1/10/2010 1http://numericalmethods.eng.usf.edu

http://numericalmethods.eng.usf.edu/�


Newton-Raphson Method

http://numericalmethods.eng.usf.edu

http://numericalmethods.eng.usf.edu/�


Newton-Raphson Method
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Figure 1 Geometrical illustration of the Newton-Raphson method.
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Derivation 
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Figure 2 Derivation of the Newton-Raphson method.
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Algorithm for Newton-
Raphson Method
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Step 1

)(xf ′Evaluate symbolically.
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Step 2

( )
( )i

i
ii xf

xf -  = xx
′+1

Use an initial guess of the root,    , to estimate the new 
value of the root,      , as
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Step 3
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Find the absolute relative approximate error        asa∈
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Step 4

Compare the absolute relative approximate error  
with the pre-specified relative error tolerance     .  

Also, check if the number of iterations has exceeded 
the maximum number of iterations allowed. If so, 
one needs to terminate the algorithm and notify the 
user.

s∈

Is            ?
Yes

No

Go to Step 2 using new 
estimate of the root.

Stop the algorithm

sa >∈∈

http://numericalmethods.eng.usf.edu9



( ) ( ){ }3843 ln10775468.8ln10341077.210129241.11 RR
T

−−− ×+×+×=

http://numericalmethods.eng.usf.edu10

Example 1
Thermistors are temperature-measuring devices based on the 
principle that the thermistor material exhibits a change in 
electrical resistance with a change in temperature.  By 
measuring the resistance of the thermistor material, one can 
then determine the temperature.

Figure 3 A typical thermistor.

For a 10K3A Betatherm thermistor, the 
relationship between the resistance, 
R, of the thermistor and the 
temperature is given by 

where T is in Kelvin and R is in ohms.

Thermally
conductive epoxy
coating

Tin plated copper
alloy lead wires
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Example 1 Cont.
For the thermistor, error of no more than ±0.01oC is acceptable.  
To find the range of the resistance that is within this acceptable 
limit at 19oC, we need to solve 

and

Use the Newton-Raphson method of finding roots of equations to 
find the resistance R at 18.99oC. 

a) Conduct three iterations to estimate the root of the above 
equation. 

b) Find the absolute relative approximate error at the end of each 
iteration and the number of significant digits at least correct at 
the end of each iteration.

( ) ( ){ }3843 ln10775468.8ln10341077.210129241.1
15.27301.19

1 RR −−− ×+×+×=
+

( ) ( ){ }3843 ln10775468.8ln10341077.210129241.1
15.27399.18

1 RR −−− ×+×+×=
+
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Example 1 Cont.
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Figure 4 Graph of the function f(R).
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Example 1 Cont.

Figure 5 Graph of the estimate of the 
root after Iteration 1.

Initial guess: 150000 =R

Iteration 1
The estimate of the root is

15.862%

100
12946

1500012946

=

×
−

=∈a

The absolute relative approximate 
error is 

The number of significant digits at least correct is 0.
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Example 1 Cont.

Figure 6 Graph of the estimate of the 
root after Iteration 2.

Iteration 2
The estimate of the root is

The absolute relative approximate 
error is 

The number of significant digits at least correct is 1.
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Example 1 Cont.

Figure 7 Graph of the estimate of the 
root after Iteration 3.

Iteration 2
The estimate of the root is

The absolute relative approximate 
error is 

The number of significant digits at least correct is 3.



Advantages and Drawbacks 
of Newton Raphson Method
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Advantages

 Converges fast (quadratic convergence), if 
it converges.  

 Requires only one guess
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Drawbacks
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1. Divergence at inflection points
Selection of the initial guess or an iteration value of the root that 
is close to the inflection point of the function         may start 
diverging away from the root in ther Newton-Raphson method.

For example, to find the root of the equation                                   .

The Newton-Raphson method reduces to                                       .

Table 1 shows the iterated values of the root of the equation.

The root starts to diverge at Iteration 6 because the previous estimate 
of 0.92589 is close to the inflection point of         . 

Eventually after 12 more iterations the root converges to the exact 
value of 

( )xf
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Drawbacks – Inflection Points

Iteration 
Number

xi

0 5.0000

1 3.6560

2 2.7465

3 2.1084

4 1.6000

5 0.92589

6 −30.119

7 −19.746

18 0.2000 ( ) ( ) 0512.01 3 =+−= xxf
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Figure 8 Divergence at inflection point for

Table 1 Divergence near inflection point.



2. Division by zero
For the equation

the Newton-Raphson method 
reduces to

For                            , the 
denominator will equal zero. 

Drawbacks – Division by Zero

( ) 0104.203.0 623 =×+−= −xxxf

20 http://numericalmethods.eng.usf.edu

ii

ii
ii xx

xxxx
06.03

104.203.0
2

623

1 −
×+−

−=
−

+

02.0or  0 00 == xx Figure 9 Pitfall of division by zero 
or near a zero number



Results obtained from the Newton-Raphson method may 
oscillate about the local maximum  or minimum without 
converging on a root but converging on the local maximum or 
minimum. 

Eventually, it may lead to division by a number close to zero 
and may diverge.

For example  for                          the equation has no real 
roots.

Drawbacks – Oscillations near local 
maximum and minimum

( ) 02 2 =+= xxf
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3. Oscillations near local maximum and minimum



Drawbacks – Oscillations near local 
maximum and minimum
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Figure 10 Oscillations around local   
minima for                  .( ) 2 2 += xxf

Iteration 
Number

0
1
2
3
4
5
6
7
8
9

–1.0000
0.5

–1.75
–0.30357
3.1423
1.2529
–0.17166
5.7395
2.6955
0.97678

3.00
2.25
5.063
2.092
11.874
3.570
2.029
34.942
9.266
2.954

300.00
128.571
476.47
109.66
150.80
829.88
102.99
112.93
175.96

Table 3 Oscillations near local maxima 
and mimima in Newton-Raphson method.

ix ( )ixf %a∈



4. Root Jumping
In some cases where the function          is oscillating and has a number 
of roots, one may choose an initial guess close to a root. However, the 
guesses may jump and converge to some other root.

For example 

Choose 

It will converge to

instead of 
-1.5

-1

-0.5

0

0.5

1

1.5

-2 0 2 4 6 8 10

x

f(x)

 -0.06307 0.5499 4.461  7.539822

Drawbacks – Root Jumping

( ) 0 sin == xxf
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( )xf

539822.74.20 == πx

0=x

2831853.62 == πx Figure 11 Root jumping from intended 
location of root for

.( ) 0 sin == xxf



Additional Resources
For all resources on this topic such as digital audiovisual 
lectures, primers, textbook chapters, multiple-choice 
tests, worksheets in MATLAB, MATHEMATICA, MathCad 
and MAPLE, blogs, related physical problems, please 
visit

http://numericalmethods.eng.usf.edu/topics/newton_ra
phson.html

http://numericalmethods.eng.usf.edu/topics/newton_raphson.html�
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THE END
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