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Chapter 06.03 
Linear Regression 
 
 
 
 
 

1. 
After reading this chapter, you should be able to 

2. 
define regression, 

3. 
use several minimizing of residual criteria to choose the right criterion, 

4. 

derive the constants of a linear regression model based on least squares method 
criterion, 

5. 

use in examples, the derived formulas for the constants of a linear regression model, 
and 

 

prove that the constants of the linear regression model are unique and correspond to 
a minimum. 

 Linear regression is the most popular regression model.  In this model, we wish to 
predict response to n  data points ),(),......,,(),,( 2211 nn yxyxyx  by a regression model given 
by 
 xaay 10 +=                         (1) 
where 0a  and 1a  are the constants of the regression model. 
 A measure of goodness of fit, that is, how well xaa 10 +  predicts the response variable 
y  is the magnitude of the residual iε  at each of the n  data points. 

 )( 10 iii xaayE +−=                      (2) 
 Ideally, if all the residuals iε  are zero, one may have found an equation in which all 
the points lie on the model.  Thus, minimization of the residual is an objective of obtaining 
regression coefficients.   
 The most popular method to minimize the residual is the least squares methods, 
where the estimates of the constants of the models are chosen such that the sum of the 

squared residuals is minimized, that is minimize ∑
=

n

i
iE

1

2 .   

 
 Why minimize the sum of the square of the residuals?  Why not, for instance, 
minimize the sum of the residual errors or the sum of the absolute values of the residuals?  
Alternatively, constants of the model can be chosen such that the average residual is zero 
without making individual residuals small.  Will any of these criteria yield unbiased 



06.03.2                                                        Chapter 06.03 
 

parameters with the smallest variance?  All of these questions will be answered below.  Look 
at the data in Table 1. 
      
Table 1   Data points. 

x  y  
2.0 4.0 
3.0 6.0 
2.0 6.0 
3.0 8.0 

      
To explain this data by a straight line regression model, 
 xaay 10 +=                        (3) 

and using minimizing ∑
=

n

i
iE

1

as a criteria to find 0a  and 1a , we find that for (Figure 1) 

 44 −= xy                       (4) 

 
       Figure 1 Regression curve 44 −= xy  for y  vs. x  data. 
 

the sum of the residuals, 0
4

1
=∑

=i
iE  as shown in the Table 2. 

  Table 2  The residuals at each data point for regression model 44 −= xy . 
x  y  predictedy  predictedyy −=ε  
2.0 4.0 4.0 0.0 
3.0 6.0 8.0 -2.0 
2.0 6.0 4.0 2.0 
3.0 8.0 8.0 0.0 

 0
4

1
=∑

=i
iε  
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 So does this give us the smallest error? It does as 0
4

1

=∑
=i

iE . But it does not give 

unique values for the parameters of the model. A straight-line of the model  
 6=y                        (5) 

also makes 0
4

1

=∑
=i

iE as shown in the Table 3. 

  Table 3  The residuals at each data point for regression model 6=y  
x  y  predictedy  predictedyy −=ε  
2.0 4.0 6.0 -2.0 
3.0 6.0 6.0 0.0 
2.0 6.0 6.0 0.0 
3.0 8.0 6.0 2.0 

 0
4

1

=∑
=i

iE  

 

 
 Figure 2 Regression curve 6=y  for y  vs. x  data. 

 
 Since this criterion does not give a unique regression model, it cannot be used for 
finding the regression coefficients. Let us see why we cannot use this criterion for any 
general data.  We want to minimize  

 ( )∑∑
==

−−=
n

i
ii

n

i
i xaayE

1
10

1

                    (6) 

Differentiating Equation (6) with respect to 0a  and 1a , we get  

 n
a

E n

i

n

i
i

−=−=
∂

∂

∑
∑

=

=

10

1 1             (7) 
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∑
∑

=

=           (8) 

Putting these equations to zero, give 0=n  but that is not possible.  Therefore, unique values 
of 0a  and 1a  do not exist. 

You may think that the reason the minimization criterion ∑
=

n

i
iE

1

does not work is that 

negative residuals cancel with positive residuals.  So is minimizing ∑
=

n

i
iE

1

 better?  Let us 

look at the data given in the Table 2 for equation 44 −= xy .  It makes 4
4

1

=∑
=i

iE  as shown 

in the following table. 
 
 Table 4   The absolute residuals at each data point when employing 44 −= xy . 

x  y  predictedy  predictedyy −=ε  
2.0 4.0 4.0 0.0 
3.0 6.0 8.0 2.0 
2.0 6.0 4.0 2.0 
3.0 8.0 8.0 0.0 

4
4

1
=∑

=i
iε  

The value of 4
4

1

=∑
=i

iE  also exists for the straight line model 6=y . No other straight line 

model for this data has 4
4

1

<∑
=i

iE .  Again, we find the regression coefficients are not unique, 

and hence this criterion also cannot be used for finding the regression model.  
Let us use the least squares criterion where we minimize  

 ( )
2

1
10

1

2 ∑∑
==

−−==
n

i
ii

n

i
ir xaayES          (9) 

rS  is called the sum of the square of the residuals. 
To find 0a  and 1a , we minimize rS  with respect to 0a  and 1a . 

 ( )( ) 012
1

10
0

=−−−=
∂
∂ ∑

=

n

i
ii

r xaay
a
S                             (10) 

 ( )( ) 02
1

10
1

=−−−=
∂
∂ ∑

=

n

i
iii

r xxaay
a
S                             (11) 

giving  
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1
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i
i xaay                              (12) 
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Noting that 0000
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Figure 3 Linear regression of y  vs. x  data showing residuals and square of residual at a 
typical point, ix . 
 
       
Solving the above Equations (14) and (15) gives 
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Redefining 

( )11 , yx

( )33, yx

( )22 , yx

),( nn yx
( )ii yx ,

iii xaayE 10 −−=

y 

x 

xaay 10 +=  
 



06.03.6                                                        Chapter 06.03 
 

 
__

1
yxnyxS

n

i
iixy −=∑

=

                              (18) 

 
2_

1

2 xnxS
n

i
ixx −=∑

=

                              (19) 

 
n

x
x

n

i
i∑

== 1
_

                               (20) 
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we can rewrite 

 
xx

xy

S
S

a =1                                (22) 

 
_

1

_

0 xaya −=                                (23) 
 
Example 1 
To simplify a model for a diode, it is approximated by a forward bias model consisting of DC 
voltage, dV , and resistor dR . Below are the current vs. voltage data that is collected for a 
small signal. 

Table 5 Current versus voltage for a small signal. 
 

V  
(volts) 

I  
(amps) 

0.6 0.01 
0.7 0.05 
0.8 0.20 
0.9 0.70 
1.0 2.00 
1.1 4.00 

 
 
The I vs. V data is regressed to 01 BVBI += . 
Once 0B  and 1B  are known, dV  and dR  can be computed as 

 
1

0

B
B

Vd −=   and  
1

1
B

Rd =  

Find the value of dV and dR . 
Solution 
Table 6 shows the summations needed for the calculation of the constants of the regression 
model. 
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                     Table 6 Tabulation of data for calculation of needed summations. 

i V  I  2V  IV ×  
− Volts Amperes 2Volts  Volt-Amps 
1 0.6 0.01 0.36 0.006 
2 0.7 0.05 0.49 0.035 
3 0.8 0.20 0.64 0.160 
4 0.9 0.70 0.81 0.630 
5 1.0 2.00 1.00 2.000 
6 1.1 4.00 1.21 4.400 

∑
=

6

1i
 5.1 6.96 4.51 7.231 
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       ( )( )85.0514.716.1 −=  
         2269.5−= A 
 

2269.5514.7 −×= VI  
 

 
Figure 4  Linear regression of current vs. voltage 

 
 
Solving for dV and dR : 

1

0

B
B

Vd −=
 

      





 −−=

5143.7
2269.5  

      69560.0= Volts 
 

1

1
B

Rd =
 

      
5143.7
1

=  

      13308.0= Ohms 
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Example 2 
To find the longitudinal modulus of a composite material, the following data, as given in 
Table 7, is collected. 
 
   Table 7 Stress vs. strain data for a composite material. 

Strain 
(%) 

Stress  
( MPa ) 

0 0 
0.183 306 
0.36 612 
0.5324 917 
0.702 1223 
0.867 1529 
1.0244 1835 
1.1774 2140 
1.329 2446 
1.479 2752 
1.5 2767 
1.56 2896 

 
Find the longitudinal modulus E  using the regression model. 
 εσ E=                                (24) 
 
Solution 
Rewriting data from Table 7, stresses versus strain data in Table 8 
   
                       Table 8  Stress vs strain data for a composite in SI system of units 

Strain  
( m/m ) 

Stress  
( Pa ) 

0.0000 0.0000 
3108300.1 −×  8100600.3 ×  
3106000.3 −×  8101200.6 ×  
3103240.5 −×  8101700.9 ×  
3100200.7 −×  9102230.1 ×  
3106700.8 −×  9105290.1 ×  
2100244.1 −×  9108350.1 ×  
2101774.1 −×  9101400.2 ×  
2103290.1 −×  9104460.2 ×  
2104790.1 −×  9107520.2 ×  
2105000.1 −×  9107670.2 ×  
2105600.1 −×  9108960.2 ×  
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Applying the least square method, the residuals iγ  at each data point is 
 iii Eεσγ −=  
The sum of square of the residuals is 

 ∑
=

=
n

i
irS

1

2γ  

      ( )∑
=

−=
n

i
ii E

1

2εσ  

Again, to find the constant E , we need to minimize rS  by differentiating with respect to E  
and then equating to zero 

 ( ) 0)(2
1

=−−=
∂
∂ ∑

=
i

n

i
ii

r E
E
S

εεσ  

From there, we obtain  

 
∑

∑

=

== n

i
i

n

i
ii

E

1

2

1

ε

εσ
                    (25) 

The summations used in Equation (25) are given in the Table 9. 
                          
                            Table 9 Tabulation for Example 2 for needed summations 

i  ε  σ  2ε  εσ  
1 0.0000 0.0000 0.0000 0.0000 
2 3108300.1 −×  8100600.3 ×  6103489.3 −×  5105998.5 ×  
3 3106000.3 −×  8101200.6 ×  5102960.1 −×  6102032.2 ×  
4 3103240.5 −×  8101700.9 ×  5108345.2 −×  6108821.4 ×  
5 3100200.7 −×  9102230.1 ×  5109280.4 −×  6105855.8 ×  
6 3106700.8 −×  9105290.1 ×  5105169.7 −×  7103256.1 ×  
7 2100244.1 −×  9108350.1 ×  4100494.1 −×  7108798.1 ×  
8 2101774.1 −×  9101400.2 ×  4103863.1 −×  7105196.2 ×  
9 2103290.1 −×  9104460.2 ×  4107662.1 −×  7102507.3 ×  
10 2104790.1 −×  9107520.2 ×  4101874.2 −×  7100702.4 ×  
11 2105000.1 −×  9107670.2 ×  4102500.2 −×  7101505.4 ×  
12 2105600.1 −×  9108960.2 ×  4104336.2 −×  7105178.4 ×  

∑
=

12

1i
   3102764.1 −×  8103337.2 ×  

 
 12=n  

 ∑
=

−×=
12

1

32 102764.1
i

iε  

 ∑
=
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12

1

8103337.2
i

iiεσ  
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Figure 5  Linear regression model of stress vs. strain for a composite material. 

 
Appendix 
Do the values of the constants of the least squares straight-line regression model correspond 
to a minimum?  Is the straight line unique? 
 
ANSWER: 

Given n  data pairs, ( ) ( )nn yxyx ,,,, 11  , the best fit for the straight line regression model  
 xaay 10 +=                                         (A.1) 
is found by the method of least squares. 
Starting with the sum of the square of the residuals rS , we get 

 ( )∑
=

−−=
n

i
iir xaayS

1

2
10                 (A.2) 
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and using 

 0
0

=
∂
∂
a
Sr                   (A.3) 

 0
1

=
∂
∂

a
Sr                   (A.4) 

gives two simultaneous linear equations whose solution is 
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But does this give the minimum of value of rS ?  The first derivative only tells us about a 
local extreme, not whether it is a minimum or a maximum.   
 
We need to conduct a second derivative test to find out whether the point ),( 10 aa  from 
Equation (A.5) gives the minimum or maximum of rS .  
 
What is the second derivative test for a minimum if we have a function of two variables? 
 
If you have a function ( )yxf ,  and we found a critical point ( )ba,  from the first derivative 
test, then ( )ba,  is a minimum point if  
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From Equation (2) 
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then 
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So we satisfy condition (A.7) as from Equation (A.10), n2  is a positive number and from 

Equation (A.11) ∑
=

n

i
ix

1

22 is a positive number as assuming that all data points are NOT zero is 

reasonable.   
 
Is the other condition for being a minimum as given by Equation (A.6) met?  Yes, we can 
show (the proof is not given) 
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So the values of 0a  and 1a  that we have in Equations (A.5a) and (A.5b), are in fact a 
minimum.  Also, this minimum is an absolute minimum because the first derivative is zero 
for only one point as given by Equations (A.5a) and (A.5b).  Hence, this also makes the 
straight-line regression model unique. 
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