
 
 
 
 
 
Chapter 01.07 
Taylor Theorem Revisited 
 
 
 
 
 
After reading this chapter, you should be able to 
 

1. understand the basics of Taylor’s theorem, 
2. write transcendental and trigonometric functions as Taylor’s polynomial, 
3. use Taylor’s theorem to find the values of a function at any point, given the values of 

the function and all its derivatives at a particular point, 
4. calculate errors and error bounds of approximating a function by Taylor series, and 
5. revisit the chapter whenever Taylor’s theorem is used to derive or explain numerical 

methods for various mathematical procedures. 
 
The use of Taylor series exists in so many aspects of numerical methods that it is imperative 
to devote a separate chapter to its review and applications.  For example, you must have 
come across expressions such as 
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All the above expressions are actually a special case of Taylor series called the Maclaurin 
series.  Why are these applications of Taylor’s theorem important for numerical methods?  
Expressions such as given in Equations (1), (2) and (3) give you a way to find the 
approximate values of these functions by using the basic arithmetic operations of addition, 
subtraction, division, and multiplication.   
 
Example 1 

Find the value of  using the first five terms of the Maclaurin series. 25.0e
Solution 

The first five terms of the Maclaurin series for is xe

!4!3!2
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432 xxxxex ++++≈  

01.07.1 
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!4
25.0

!3
25.0

!2
25.025.01

432
25.0 ++++≈e  

                    2840.1=
The exact value of  up to 5 significant digits is also 1.2840.   25.0e
But the above discussion and example do not answer our question of what a Taylor series is.   
Here it is, for a function  ( )xf
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provided all derivatives of  exist and are continuous between ( )xf x  and .   hx +
 
What does this mean in plain English?   
As Archimedes would have said (without the fine print), “Give me the value of the function at 
a single point, and the value of all (first, second, and so on) its derivatives, and I can give 
you the value of the function at any other point”.   
            It is very important to note that the Taylor series is not asking for the expression of 
the function and its derivatives, just the value of the function and its derivatives at a single 
point.   
           Now the fine print:  Yes, all the derivatives have to exist and be continuous between x  
(the point where you are) to the point, hx +  where you are wanting to calculate the function 
at.  However, if you want to calculate the function approximately by using the  order 
Taylor polynomial, then derivatives need to exist and be continuous in the 
closed interval , while the  derivative needs to exist and be continuous in 
the open interval . 
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Example 2 

Take , we all know the value of ( ) ( )xxf sin= 1
2

sin =⎟
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⎜
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⎛π .  We also know the ( ) ( )xxf cos=′  

and 0
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of  and all its derivatives at ( )xsin
2
π

=x .  We do not need to use any calculators, just plain 

differential calculus and trigonometry would do.  Can you use Taylor series and this 
information to find the value of ? ( )2sin
Solution 

2
π
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42920.0=  
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So 
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The value of  I get from my calculator is which is very close to the value I just 
obtained.  Now you can get a better value by using more terms of the series.  In addition, you 
can now use the value calculated for 

( )2sin 90930.0

( )2sin  coupled with the value of  (which can be 
calculated by Taylor series just like this example or by using the  identity) 
to find value of  at some other point.  In this way, we can find the value of 

( )2cos
1cossin 22 ≡+ xx

( )xsin ( )xsin  for 
any value from  to 0=x π2  and then can use the periodicity of , that is ( )xsin

( ) ( ) …,2,1,2sinsin =+= nnxx π  to calculate the value of ( )xsin   at any other point. 
 

Example 3 

Derive the Maclaurin series of ( ) "+−+−=
!7!5!3

sin
753 xxxxx  

Solution 

In the previous example, we wrote the Taylor series for ( )xsin  around the point 
2
π

=x .  

Maclaurin series is simply a Taylor series for the point 0=x . 
( ) ( )xxf sin= ,  ( ) 00 =f
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( ) ( )xxf cos=′ ,  ( ) 10 =′f
( ) ( )xxf sin−=′′ ,  ( ) 00 =′′f
( ) ( )xxf cos−=′′′ ,  ( ) 10 −=′′′f
( ) ( )xxf sin=′′′′ ,  ( ) 00 =′′′′f
( ) )cos(xxf =′′′′′ ,  ( ) 10 =′′′′′f

  
Using the Taylor series now, 
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Example 4 

Find the value of  given that( )6f ( ) 1254 =f , ( ) 744 =′f , ( ) 304 =′′f ,  and all 
other higher derivatives of  at 

( ) 64 =′′′f
( )xf 4=x  are zero. 

Solution 

( ) ( ) ( ) ( ) ( ) "+′′′+′′+′+=+
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      2=
Since fourth and higher derivatives of ( )xf  are zero at 4=x . 
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Note that to find  exactly, we only needed the value of the function and all its 
derivatives at some other point, in this case, 

( )6f
4=x .  We did not need the expression for the 

function and all its derivatives.  Taylor series application would be redundant if we needed to 
know the expression for the function, as we could just substitute 6=x  in it to get the value 
of . ( )6f
             Actually the problem posed above was obtained from a known function 

 where( ) 523 23 +++= xxxxf ( ) 1254 =f , ( ) 744 =′f , ( ) 304 =′′f , , and all other 
higher derivatives are zero. 

( ) 64 =′′′f

 
Error in Taylor Series 
As you have noticed, the Taylor series has infinite terms.  Only in special cases such as a 
finite polynomial does it have a finite number of terms.  So whenever you are using a Taylor 
series to calculate the value of a function, it is being calculated approximately.   
 
The Taylor polynomial of order  of a function  with n )(xf )1( +n  continuous derivatives in 
the domain  is given by  ],[ hxx +
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where the remainder is given by 
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where 
hxcx +<<  

that is, c  is some point in the domain ( )hxx +, . 
 
Example 5 

The Taylor series for at point xe 0=x  is given by 

"++++++=
!5!4!3!2

1
5432 xxxxxe x  

a) What is the truncation (true) error in the representation of  if only four terms of the 
series are used?   

1e

b) Use the remainder theorem to find the bounds of the truncation error. 
Solution 

a) If only four terms of the series are used, then 

!3!2
1

32 xxxe x +++≈  

!3
1

!2
111

32
1 +++≈e  

       66667.2=
The truncation (true) error would be the unused terms of the Taylor series, which then are 
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b) But is there any way to know the bounds of this error other than calculating it 

directly?  Yes,  

( ) ( ) ( ) ( ) ( ) ( )xR
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hxfhxfxfhxf n

n
n +++′+=+
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c  is some point in the domain ( hxx )+, .  So in this case, if we are using four terms of the 
Taylor series, the remainder is given by ( )3,0 == nx  
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The error is bound between 
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0 eRe
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24
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24
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3
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( ) 113261.01041667.0 3 << R  
So the bound of the error is less than  which does concur with the calculated error 
of .  

113261.0
0516152.0

 
Example 6 

The Taylor series for at point  is given by xe 0=x

"++++++=
!5!4!3!2

1
5432 xxxxxe x  

As you can see in the previous example that by taking more terms, the error bounds decrease 
and hence you have a better estimate of .  How many terms it would require to get an 
approximation of  within a magnitude of true error of less than ? 

1e
1e 610−
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Solution 

Using  terms of the Taylor series gives an error bound of  ( 1+n )
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Since  
hxcx +<<  
100 +<< c  

10 << c  

( )
)!1(

0
)!1(
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+ n

eR
n n  

So if we want to find out how many terms it would require to get an approximation of  
within a magnitude of true error of less than , 

1e
610−

610
)!1(

−<
+n
e  

en 610)!1( >+  
310)!1( 6 ×>+n   (as we do not know the value of but it is less than 3). e

9≥n  
So 9 terms or more will get  within an error of  in its value.   1e 610−

 
 We can do calculations such as the ones given above only for simple functions.  To 
do a similar analysis of how many terms of the series are needed for a specified accuracy for 
any general function, we can do that based on the concept of absolute relative approximate 
errors discussed in Chapter 01.02 as follows. 
 We use the concept of absolute relative approximate error (see Chapter 01.02 for 
details), which is calculated after each term in the series is added.  The maximum value of 

, for which the absolute relative approximate error is less than % is the least 
number of significant digits correct in the answer.  It establishes the accuracy of the 
approximate value of a function without the knowledge of remainder of Taylor series or the 
true error. 

m m−× 2105.0
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