Differentiation-Discrete Functions

Major: All Engineering Majors

Authors: Autar Kaw, Sri Harsha Garapati

http://numericalmethods.eng.usf.edu

Transforming Numerical Methods Education for STEM Undergraduates

Differentiation –Discrete Functions

http://numericalmethods.eng.usf.edu

Forward Difference Approximation

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

For a finite $\Delta x'$

$$f'(x) \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Graphical Representation Of Forward Difference Approximation

Figure 1 Graphical Representation of forward difference approximation of first derivative.

Example 1

The upward velocity of a rocket is given as a function of time in Table 1.

Table 1 Velocity as a function of time

t	v(t)
S	m/s
0	0
10	227.04
15	362.78
20	517.35
22.5	602.97
30	901.67

Using forward divided difference, find the acceleration of the rocket at t = 16 s.

Example 1 Cont.

Solution

To find the acceleration at t=16s, we need to choose the two values closest to t=16s, that also bracket t=16s to evaluate it. The two points are t=15s and t=20s.

$$a(t_i) \approx \frac{v(t_{i+1}) - v(t_i)}{\Delta t}$$

$$t_i = 15$$

$$t_{i+1} = 20$$

$$\Delta t = t_{i+1} - t_i$$

$$= 20 - 15$$

$$= 5$$

Example 1 Cont.

$$a(16) \approx \frac{v(20) - v(15)}{5}$$

$$\approx \frac{517.35 - 362.78}{5}$$

$$\approx 30.914 \text{ m/s}^2$$

Direct Fit Polynomials

In this method, given 'n+1' data points (x_0, y_0) , (x_1, y_1) , (x_2, y_2) ,..., (x_n, y_n) one can fit a n^{th} order polynomial given by $P_n(x) = a_0 + a_1 x + \ldots + a_{n-1} x^{n-1} + a_n x^n$

To find the first derivative,

$$P'_n(x) = \frac{dP_n(x)}{dx} = a_1 + 2a_2x + \dots + (n-1)a_{n-1}x^{n-2} + na_nx^{n-1}$$

Similarly other derivatives can be found.

The upward velocity of a rocket is given as a function of time in Table 2.

Table 2 Velocity as a function of time

t	v(t)
S	m/s
0	0
10	227.04
15	362.78
20	517.35
22.5	602.97
30	901.67

Using the third order polynomial interpolant for velocity, find the acceleration of the rocket at t = 16 s.

Solution

For the third order polynomial (also called cubic interpolation), we choose the velocity given by

$$v(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$$

Since we want to find the velocity at $t=16~\mathrm{s}$, and we are using third order polynomial, we need to choose the four points closest to $t=16~\mathrm{s}$ and that also bracket $t=16~\mathrm{s}$ to evaluate it.

The four points are
$$t_o = 10$$
, $t_1 = 15$, $t_2 = 20$, and $t_3 = 22.5$.

$$t_o = 10, \ v(t_o) = 227.04$$

$$t_1 = 15, \ v(t_1) = 362.78$$

$$t_2 = 20, \ v(t_2) = 517.35$$

$$t_3 = 22.5, \ v(t_3) = 602.97$$

such that

$$v(10) = 227.04 = a_0 + a_1(10) + a_2(10)^2 + a_3(10)^3$$

$$v(15) = 362.78 = a_0 + a_1(15) + a_2(15)^2 + a_3(15)^3$$

$$v(20) = 517.35 = a_0 + a_1(20) + a_2(20)^2 + a_3(20)^3$$

$$v(22.5) = 602.97 = a_0 + a_1(22.5) + a_2(22.5)^2 + a_3(22.5)^3$$

Writing the four equations in matrix form, we have

$$\begin{bmatrix} 1 & 10 & 100 & 1000 \\ 1 & 15 & 225 & 3375 \\ 1 & 20 & 400 & 8000 \\ 1 & 22.5 & 506.25 & 11391 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 227.04 \\ 362.78 \\ 517.35 \\ 602.97 \end{bmatrix}$$

Solving the above four equations gives

$$a_0 = -4.3810$$
 $a_1 = 21.289$
 $a_2 = 0.13065$
 $a_3 = 0.0054606$

Hence

$$v(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$$

= -4.3810 + 21.289t + 0.13065t² + 0.0054606t³, 10 \le t \le 22.5

Figure 1 Graph of upward velocity of the rocket vs. time.

The acceleration at t=16 is given by

$$a(16) = \frac{d}{dt} v(t) \Big|_{t=16}$$

Given that

$$v(t) = -4.3810 + 21.289t + 0.13065t^{2} + 0.0054606t^{3}, 10 \le t \le 22.5$$

$$a(t) = \frac{d}{dt}v(t)$$

$$= \frac{d}{dt}(-4.3810 + 21.289t + 0.13065t^{2} + 0.0054606t^{3})$$

$$= 21.289 + 0.26130t + 0.016382t^{2}, \quad 10 \le t \le 22.5$$

$$a(16) = 21.289 + 0.26130(16) + 0.016382(16)^{2}$$

$$= 29.664 \text{m/s}^{2}$$

Lagrange Polynomial

In this method, given $(x_1, y_1), ..., (x_n, y_n)$, one can fit a $(n-1)^{th}$ order Lagrangian polynomial given by

$$f_n(x) = \sum_{i=0}^n L_i(x) f(x_i)$$

where 'n' in $f_n(x)$ stands for the n^{th} order polynomial that approximates the function y=f(x) given at (n+1) data points as $(x_0,y_0),(x_1,y_1),...,(x_{n-1},y_{n-1}),(x_n,y_n)$, and

$$L_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x - x_j}{x_i - x_j}$$

 $L_i(x)$ a weighting function that includes a product of (n-1) terms with terms of j=i omitted.

Lagrange Polynomial Cont.

Then to find the first derivative, one can differentiate $f_n(x)$ once, and so on for other derivatives.

For example, the second order Lagrange polynomial passing through

$$(x_0, y_0), (x_1, y_1), (x_2, y_2)$$
 is

$$f_2(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} f(x_0) + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} f(x_1) + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} f(x_2)$$

Differentiating equation (2) gives

Lagrange Polynomial Cont.

$$f_{2}'(x) = \frac{2x - (x_{1} + x_{2})}{(x_{0} - x_{1})(x_{0} - x_{2})} f(x_{0}) + \frac{2x - (x_{0} + x_{2})}{(x_{1} - x_{0})(x_{1} - x_{2})} f(x_{1}) + \frac{2x - (x_{0} + x_{1})}{(x_{2} - x_{0})(x_{2} - x_{1})} f(x_{2})$$

Differentiating again would give the second derivative as

$$f_2''(x) = \frac{2}{(x_0 - x_1)(x_0 - x_2)} f(x_0) + \frac{2}{(x_1 - x_0)(x_1 - x_2)} f(x_1) + \frac{2}{(x_2 - x_0)(x_2 - x_1)} f(x_2)$$

Example 3

The upward velocity of a rocket is given as a function of time in Table 3.

Table 3 Velocity as a function of time

t	v(t)
S	m/s
0	0
10	227.04
15	362.78
20	517.35
22.5	602.97
30	901.67

Determine the value of the acceleration at t = 16 s using the second order Lagrangian polynomial interpolation for velocity.

Example 3 Cont.

Solution

$$v(t) = \left(\frac{t - t_1}{t_0 - t_1}\right) \left(\frac{t - t_2}{t_0 - t_2}\right) v(t_0) + \left(\frac{t - t_0}{t_1 - t_0}\right) \left(\frac{t - t_2}{t_1 - t_2}\right) v(t_1) + \left(\frac{t - t_0}{t_2 - t_0}\right) \left(\frac{t - t_1}{t_2 - t_1}\right) v(t_2)$$

$$a(t) = \frac{2t - (t_1 + t_2)}{(t_0 - t_1)(t_0 - t_2)} v(t_0) + \frac{2t - (t_0 + t_2)}{(t_1 - t_0)(t_1 - t_2)} v(t_1) + \frac{2t - (t_0 + t_1)}{(t_2 - t_0)(t_2 - t_1)} v(t_2)$$

$$a(16) = \frac{2(16) - (15 + 20)}{(10 - 15)(10 - 20)} (227.04) + \frac{2(16) - (10 + 20)}{(15 - 10)(15 - 20)} (362.78) + \frac{2(16) - (10 + 15)}{(20 - 10)(20 - 15)} (517.35)$$

$$= -0.06(227.04) - 0.08(362.78) + 0.14(517.35)$$

$$= 29.784 \text{m/s}^2$$

Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

http://numericalmethods.eng.usf.edu/topics/discrete_02 dif.html

THE END

http://numericalmethods.eng.usf.edu