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Chapter 08.02 
Euler’s Method for Ordinary Differential Equations

After reading this chapter, you should be able to:
1. develop Euler’s Method for solving ordinary differential equations,

2. determine how the step size affects the accuracy of a solution,

3. derive Euler’s formula from Taylor series, and
4. use Euler’s method to find approximate values of integrals.
What is Euler’s method?

Euler’s method is a numerical technique to solve ordinary differential equations of the form
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So only first order ordinary differential equations can be solved by using Euler’s method.  In another chapter we will discuss how Euler’s method is used to solve higher order ordinary differential equations or coupled (simultaneous) differential equations.  How does one write a first order differential equation in the above form?

Example 1 

Rewrite
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Solution
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In this case
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Example 2

Rewrite
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Solution
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In this case
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Derivation of Euler’s method
At 
[image: image12.wmf]0

=

x

, we are given the value of 
[image: image13.wmf].

0

y

y

=

  Let us call 
[image: image14.wmf]0

=

x

 as 
[image: image15.wmf]0

x

.  Now since we know the slope of 
[image: image16.wmf]y

 with respect to 
[image: image17.wmf]x

, that is, 
[image: image18.wmf](

)

y

x

f

,

, then at 
[image: image19.wmf]0

x

x

=

, the slope is 
[image: image20.wmf](

)

0

0

,

y

x

f

.  Both 
[image: image21.wmf]0

x

 and 
[image: image22.wmf]0

y

 are known from the initial condition 
[image: image23.wmf](

)

0

0

y

x

y

=

.

	 SHAPE  \* MERGEFORMAT 




	Figure 1  Graphical interpretation of the first step of Euler’s method.
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From here
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Calling 
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One can now use the value of 
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Based on the above equations, if we now know the value of 
[image: image40.wmf]i

y

y

=

 at 
[image: image41.wmf]i

x

, then



[image: image42.wmf](

)

h

y

x

f

y

y

i

i

i

i

,

1

+

=

+

                           



                         (3)

This formula is known as Euler’s method and is illustrated graphically in Figure 2.  In some books, it is also called the Euler-Cauchy method.
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	Figure 2 General graphical interpretation of Euler’s method. 


Example 3
The open loop response, that is, the speed of the motor to a voltage input of 20 V, assuming a system without damping is
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The Euler’s method reduces to
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Figure 1 compares the exact solution with the numerical solution from Euler’s method for the step size of 
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	Figure 3  Comparing exact and Euler’s method.
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The problem was solved again using smaller step sizes.  The results are given below in 

Table 1.

Table 1  Speed of motor at 0.8 seconds as a function of step size, 
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Figure 4 shows how the speed of the motor varies as a function of time for different step sizes.

	[image: image84.png]Exact Solution

o
=1
2

=)
8
2

=)
=1
2

=)
=1
I

(s/pe) pas

1 400

=)
g

ds 1010

=)
S
S

100

02 03 04 05 08 07 08
Time (s}

01





	Figure 4 Comparison of Euler’s method with exact solution for different step sizes.


The values of the calculated speed of the motor at 
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	Figure 5 Effect of step size in Euler’s method.


The exact solution of the ordinary differential equation is given by 
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The solution to this nonlinear equation at 
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Can one solve a definite integral using numerical methods such as Euler’s method of solving ordinary differential equations?

Let us suppose you want to find the integral of a function 
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Both fundamental theorems of calculus would be used to set up the problem so as to solve it as an ordinary differential equation.

The first fundamental theorem of calculus states that if 
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The second fundamental theorem of calculus states that if 
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at each point in 
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Asked to find
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[image: image104.wmf](

)

,

0

)

(

  

,

=

=

a

y

x

f

dx

dy

 

where then 
[image: image105.wmf](

)

b

y

 (here is where we are using the first fundamental theorem of calculus) will give the value of the integral 
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Example 4

Find an approximate value of 
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using Euler’s method of solving an ordinary differential equation.  Use a step size of 
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Solution

Given 
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, we can rewrite the integral as the solution of an ordinary differential equation
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The Euler’s method equation is
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Step 1 
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