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(H) 331.50

3. Given that 
[image: image11.wmf](

)

x

y

 is the solution to 
[image: image12.wmf]2

3

+

=

y

dx

dy

, 
[image: image13.wmf]3

)

0

(

=

y

 the value of 
[image: image14.wmf](

)

2

.

0

y

 from a second order Taylor polynomial written around 
[image: image15.wmf]0

=

x

 is
(I) 4.400
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4. The series 
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 is a Maclaurin series for the following function
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5. The function 
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is called the error function.  It is used in the field of probability and cannot be calculated exactly for finite values of 
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.  However, one can expand the integrand as a Taylor polynomial and conduct integration.  The approximate value of 
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(Q) -0.75225

(R) 0.99532

(S) 1.5330

(T) 2.8586

6. Using the remainder of Maclaurin polynomial of 
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the least order of the Maclaurin polynomial required to get an absolute true error of at most 
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to find the answer, but the knowledge that 
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For a complete solution, refer to the links at the end of the book.
01.07.1


_1283163086.unknown

_1283163123.unknown

_1283163292.unknown

_1292839785.unknown

_1399437015.unknown

_1399437027.unknown

_1399437119.unknown

_1334068924.unknown

_1283163295.unknown

_1287487470.unknown

_1283163131.unknown

_1283163140.unknown

_1283163150.unknown

_1283163159.unknown

_1283163144.unknown

_1283163137.unknown

_1283163126.unknown

_1283163100.unknown

_1283163106.unknown

_1283163117.unknown

_1283163103.unknown

_1283163092.unknown

_1283163097.unknown

_1283163089.unknown

_1283163073.unknown

_1283163079.unknown

_1283163083.unknown

_1283163076.unknown

_1283163067.unknown

_1283163070.unknown

_1279517045.unknown

_1283163063.unknown

_1279517044.unknown

