Holistic Numerical Methods Institute

committed to bringing numerical methods to undergraduates

Multiple-Choice Test

Background

Differentiation

COMPLETE SOLUTION SET

1. The definition of the first derivative of a function $f(x)$ is
(A) $f^{\prime}(x)=\frac{f(x+\Delta x)+f(x)}{\Delta x}$
(B) $f^{\prime}(x)=\frac{f(x+\Delta x)-f(x)}{\Delta x}$
(C) $f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)+f(x)}{\Delta x}$
(D) $f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$

Solution

The correct answer is (D).
The definition of the first derivative of the function $f(x)$ is

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

Choice (B) is incorrect as it is an approximate method to calculate the first derivative of a function $f(x)$. In fact, choice (B) is the forward divided difference method of approximately calculating the first derivative of a function.
2. Given $y=5 e^{3 x}+\sin x, \frac{d y}{d x}$ is
(A) $5 e^{3 x}+\cos x$
(B) $15 e^{3 x}+\cos x$
(C) $15 e^{3 x}-\cos x$
(D) $2.666 e^{3 x}-\cos x$

Solution

The correct answer is (B)
Use the sum rule of differentiation

$$
\frac{d}{d x}(u+v)=\frac{d u}{d x}+\frac{d v}{d x}
$$

Re-write the function as

$$
y=u+v
$$

where

$$
\begin{aligned}
& u=5 e^{3 x} \\
& v=\sin x
\end{aligned}
$$

Find $\frac{d u}{d x}$ and $\frac{d v}{d x}$

$$
\begin{array}{ll}
\frac{d}{d x}\left(5 e^{3 x}\right)=15 e^{3 x} & \left(\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}\right) \\
\frac{d}{d x}(\sin x)=\cos x & \left(\frac{d}{d x}(\sin x)=\cos x\right) \\
\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x} & \\
\quad=15 e^{3 x}+\cos x &
\end{array}
$$

3. Given $y=\sin 2 x, \frac{d y}{d x}$ at $x=3$ is most nearly
(A) 0.9600
(B) 0.9945
(C) 1.920
(D) 1.989

Solution

The correct answer is (C).
Using the chain rule

$$
\begin{aligned}
u & =2 x \\
y & =\sin u \\
\frac{d u}{d x} & =2 \\
\frac{d y}{d u} & =\cos u \\
& =\cos 2 x
\end{aligned}
$$

Since,

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x} \\
& \frac{d y}{d x}=(\cos 2 x) \times 2
\end{aligned}
$$

At $x=3$

$$
\begin{aligned}
& \frac{d y}{d x}=(\cos 6) \times 2 \\
& =0.9602 \times 2 \\
& =1.920
\end{aligned}
$$

(Don't forget to use radians)
4. Given $y=x^{3} \ln x, \frac{d y}{d x}$ is
(A) $3 x^{2} \ln x$
(B) $3 x^{2} \ln x+x^{2}$
(C) x^{2}
(D) $3 x$

Solution

The correct answer is (B).
Using the product rule,

$$
\begin{align*}
& \frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x} \tag{1}\\
& u=x^{3} \\
& v=\ln x \\
& \frac{d u}{d x}=3 x^{2} \\
& \frac{d v}{d x}=\frac{1}{x}
\end{align*}
$$

Substituting into Equation (1),

$$
\begin{aligned}
\frac{d y}{d x} & =x^{3} \times \frac{1}{x}+\ln x \times 3 x^{2} \\
& =x^{2}+3 x^{2} \ln x
\end{aligned}
$$

5. The velocity of a body as a function of time is given as $v(t)=5 e^{-2 t}+4$, where t is in seconds, and v is in m / s. The acceleration in $\mathrm{m} / \mathrm{s}^{2}$ at $t=0.6 \mathrm{~s}$ is
(A) -3.012
(B) 5.506
(C) 4.147
(D) -10.00

Solution

The correct answer is (A)

$$
\begin{aligned}
& a(t)=\frac{d v}{d t} \\
&=\frac{d}{d t}\left(5 e^{-2 t}+4\right) \\
&=-10 e^{-2 t} \quad\left(\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}\right) \\
& \begin{aligned}
a(0.6) & =-10 e^{-2(0.6)} \\
& =-3.012 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
\end{aligned}
$$

6. If $x^{2}+2 x y=y^{2}$, then $\frac{d y}{d x}$ is
(A) $\frac{x+y}{y-x}$
(B) $2 x+2 y$
(C) $\frac{x+1}{y}$
(D) $-x$

Solution

The correct answer is (A).

$$
\begin{aligned}
& \frac{d}{d x}\left[x^{2}\right]+\frac{d}{d x}[2 x y]=\frac{d}{d x}\left[y^{2}\right] \\
& 2 x+2 x \frac{d y}{d x}+2 y=2 y \frac{d y}{d x} \quad\left(\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}\right) \\
& x+y=(y-x) \frac{d y}{d x} \\
& \frac{d y}{d x}=\frac{x+y}{y-x}
\end{aligned}
$$

