Multiple-Choice Test
Background
Nonlinear Equations
COMPLETE SOLUTION SET

1. The value of x that satisfies $f(x) = 0$ is called the
 (A) root of an equation $f(x) = 0$
 (B) root of a function $f(x)$
 (C) zero of an equation $f(x) = 0$
 (D) none of the above

Solution
The correct answer is (A).

Only an equation has roots, while functions have zeros. A root of an equation $f(x) = 0$ is defined as the point where $f(x)$ is zero.
2. A quadratic equation has ______ root(s).

 (A) one
 (B) two
 (C) three
 (D) four

Solution

The correct answer is (B).

The quadratic equation

\[ax^2 + bx + c = 0 \]

has two roots

\[x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \]
\[x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a} \]

These two roots may be real or complex. If \(b^2 - 4ac = 0 \), the roots are repeated.
3. For a certain cubic equation, at least one of the roots is known to be a complex root. How many total complex roots does the cubic equation have?

 (A) one
 (B) two
 (C) three
 (D) cannot be determined

Solution

The correct answer is (B).

The equation would have two complex roots. There are two possible cases for the roots of a cubic equation:

1. Three real roots
2. Two complex roots and one real root

Complex roots always come in conjugate pairs \((a+ib,a-ib)\).
4. An equation such as $\tan x = x$ has _____ root(s).

(A) zero
(B) one
(C) two
(D) infinite

Solution

The correct answer is (D).

The equation,

$$\tan x = x$$

has infinite roots.

For example, the roots of

$$\tan x = x$$

include

$$x_1 = 0$$
$$x_2 = 4.49341$$
$$x_3 = 7.72525$$
$$x_4 = 54.9597$$
5. A polynomial of order n has _________ zeros.

(A) $n - 1$
(B) n
(C) $n + 1$
(D) $n + 2$

Solution
The correct answer is (B).

A polynomial of order n has n zeros.
For example a second order polynomial
\[ax^2 + bx + c \]
has two zeros
\[
\begin{align*}
x_1 &= \frac{-b + \sqrt{b^2 - 4ac}}{2a} \\
x_2 &= \frac{-b - \sqrt{b^2 - 4ac}}{2a}
\end{align*}
\]
Similarly a third order polynomial has three zeros.
6. The velocity of a body is given by \(v(t) = 5e^{-t} + 4 \), where \(t \) is in seconds and \(v \) is in m/s. The velocity of the body is 6 m/s at \(t = \) ____________ seconds.

(A) 0.1823
(B) 0.3979
(C) 0.9163
(D) 1.609

Solution
The correct answer is (C).

\[v(t) = 5e^{-t} + 4 \]

where
\[v(t) = 6 \text{ m/s} \]

Thus,
\[5e^{-t} + 4 = 6 \]
\[5e^{-t} = 6 - 4 = 2 \]
\[e^{-t} = \frac{2}{5} \]

If we take the natural log of both sides
\[\ln(e^{-t}) = \ln\left(\frac{2}{5}\right) \]
\[-t = -0.9162 \]
\[t = 0.9163 \text{ s} \]

Or if we take the \(\log_{10} \) of both sides
\[\log_{10}(e^{-t}) = \log_{10}\left(\frac{2}{5}\right) \]
\[-t \times \log_{10}(e) = -0.3979 \]
\[t = \frac{-0.3979}{-0.4343} \]
\[t = 0.9163 \text{ s} \]