Holistic Numerical Methods Institute

committed to bringing numerical methods to undergraduates

Multiple-Choice Test
 Background
 Simultaneous Linear Equations
 COMPLETE SOLUTION SET

1. Given $[A]=\left[\begin{array}{llll}6 & 2 & 3 & 9 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 4 & 5 \\ 0 & 0 & 0 & 6\end{array}\right]$ then $[A]$ is a (an) $\quad[$ matrix.
(A) diagonal
(B) identity
(C) lower triangular
(D) upper triangular

Solution

The correct answer is (D).
A square matrix $[A]$ is an upper triangular matrix if $a_{i j}=0$ when $i>j$, that is, all the elements below the diagonal are zero. Note that the statement $a_{i j}=0$ when $i>j$ implies that the matrix elements are zero for all elements where the row number is strictly greater than the column number.
2. A square matrix $[A]$ is lower triangular if
(A) $a_{i j}=0, j>i$
(B) $a_{i j}=0, i>j$
(C) $a_{i j} \neq 0, i>j$
(D) $a_{i j} \neq 0, j>i$

Solution

The correct answer is (A).
A $n \times n$ matrix $[A]$ is lower triangular if $a_{i j}=0$ for $j>i$. That is, all elements above the diagonal are zero. Note that all the elements of $[A]$ for which the column number is greater than the row numbers are zero. An example of a lower triangular matrix is

$$
[A]=\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
6 & 3 & 0 & 0 \\
4 & -5 & 0 & 0 \\
2 & 9 & 3 & -3.2
\end{array}\right]
$$

3. Given

$$
[A]=\left[\begin{array}{ccc}
12.3 & -12.3 & 20.3 \\
11.3 & -10.3 & -11.3 \\
10.3 & -11.3 & -12.3
\end{array}\right], \quad[B]=\left[\begin{array}{cc}
2 & 4 \\
-5 & 6 \\
11 & -20
\end{array}\right]
$$

then if
$[C]=[A][B]$, then
$c_{31}=$
(A) -58.2
(B) -37.6
(C) 219.4
(D) 259.4

Solution

The correct answer is (A).
The $i^{\text {th }}$ row and $j^{\text {th }}$ column of the $[C]$ matrix in $[C]=[A \llbracket B]$ is calculated by multiplying the $i^{\text {th }}$ row of $[A]$ by the $j^{\text {th }}$ column of $[B]$, that is,

$$
\begin{aligned}
c_{i j} & =\left[a_{i 1} a_{i 2} \ldots \ldots . a_{i p}\right]\left[\begin{array}{c}
b_{1 j} \\
b_{2 j} \\
\vdots \\
\vdots \\
b_{p j}
\end{array}\right] \\
& =a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\ldots \ldots+a_{i p} b_{p j} \\
& =\sum_{k=1}^{p} a_{i k} b_{k j}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
c_{31} & =\left[\begin{array}{lll}
10.3 & -11.3 & -12.3
\end{array}\right]\left[\begin{array}{c}
2 \\
-5 \\
11
\end{array}\right] \\
& =(10.3 \times 2)+(-11.3 \times-5)+(-12.3 \times 11) \\
& =20.6+56.5+-135.3 \\
& =-58.2
\end{aligned}
$$

4. The following system of equations has \qquad solution(s).

$$
\begin{aligned}
& x+y=2 \\
& 6 x+6 y=12
\end{aligned}
$$

(A) infinite
(B) no
(C) two
(D) unique

Solution

The correct answer is (A).

The system of equations

$$
\begin{align*}
& x+y=2 \tag{1}\\
& 6 x+6 y=12 \tag{2}
\end{align*}
$$

has an infinite number of solutions because the two equations are the same. Equation (2) is a multiple of 6 of Equation (1).
5. Consider there are only two computer companies in a country. The companies are named Dude and Imac. Each year, Dude keeps $1 / 5^{\text {th }}$ of its customers, while the rest switch to Imac. Each year, Imac keeps $1 / 3^{\text {rd }}$ of its customers, while the rest switch to Dude. If in 2003, Dude had $1 / 6^{\text {th }}$ of the market and Imac had $5 / 6^{\text {th }}$ of the market, what will be the share of Dude computers when the market becomes stable?
(A) $37 / 90$
(B) $5 / 11$
(C) $6 / 11$
(D) $53 / 90$

Solution

The correct answer is (B).

If D is the current market if Dude computers and M is the current market of Imac computers, and if D_{n} is the next year's Dude market and M_{n} is the next years Imac market, then since we want when the market is stable, the market share should not change from year to year.

$$
\begin{aligned}
& {\left[\begin{array}{l}
D_{n} \\
M_{n}
\end{array}\right]=\left[\begin{array}{ll}
\frac{1}{5} & \frac{2}{3} \\
\frac{4}{5} & \frac{1}{3}
\end{array}\right]\left[\begin{array}{c}
D_{n} \\
M_{n}
\end{array}\right]} \\
& D_{n}=\frac{1}{5} \times D_{n}+\frac{2}{3} \times M_{n} \\
& M_{n}=\frac{4}{5} D_{n}+\frac{1}{3} M_{n}
\end{aligned}
$$

$$
\left[\begin{array}{cc}
\frac{4}{5} & -\frac{2}{3} \\
-\frac{4}{5} & \frac{2}{3}
\end{array}\right]\left[\begin{array}{l}
D_{n} \\
M_{n}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

This has a trivial solution if $D_{n}=0, M_{n}=0$, but we know that $D_{n}+M_{n}=1$. So we are looking for a non-trivial solution. Note also that the coefficient matrix is singular.

$$
\begin{aligned}
& 0=\frac{4}{5} \times D_{n}-\frac{2}{3} \times M_{n} \\
& D_{n}+M_{n}=1
\end{aligned}
$$

gives,

$$
D_{n}=\frac{5}{11}
$$

Extra notes for the student:
If one was going to find what the market share would be in 2004

$$
\begin{aligned}
{\left[\begin{array}{c}
D_{n} \\
M_{n}
\end{array}\right] } & =\left[\begin{array}{ll}
\frac{1}{5} & \frac{2}{3} \\
\frac{4}{5} & \frac{1}{3}
\end{array}\right]\left[\begin{array}{c}
\frac{1}{6} \\
\frac{5}{6}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{53}{90} \\
\frac{37}{90}
\end{array}\right]
\end{aligned}
$$

One would use this number to find the market share in 2005 and so on. Eventually the market share would stabilize. But that would be a lenthier way to solve the problem.
6. Three kids - Jim, Corey and David receive an inheritance of $\$ 2,253,453$. The money is put in three trusts but is not divided equally to begin with. Corey's trust is three times that of David's because Corey made an A in Dr. Kaw's class. Each trust is put in an interest generating investment. The three trusts of Jim, Corey and David pays an interest of $6 \%, 8 \%, 11 \%$, respectively. The total interest of all the three trusts combined at the end of the first year is $\$ 190,740.57$. The equations to find the trust money of $\operatorname{Jim}(J)$, Corey (C) and $\operatorname{David}(D)$ in a matrix form is

$$
\begin{aligned}
& \text { (A) }\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 3 & -1 \\
0.06 & 0.08 & 0.11
\end{array}\right]\left[\begin{array}{l}
J \\
C \\
D
\end{array}\right]=\left[\begin{array}{c}
2,253,453 \\
0 \\
190,740.57
\end{array}\right] \\
& \text { (B) }\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & -3 \\
0.06 & 0.08 & 0.11
\end{array}\right]\left[\begin{array}{l}
J \\
C \\
D
\end{array}\right]=\left[\begin{array}{c}
2,253,453 \\
0 \\
190,740.57
\end{array}\right] \\
& \text { (C) }\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & -3 \\
6 & 8 & 11
\end{array}\right]\left[\begin{array}{l}
J \\
C \\
D
\end{array}\right]=\left[\begin{array}{c}
2,253,453 \\
0 \\
190,740.57
\end{array}\right] \\
& \text { (D) }\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 3 & -1 \\
6 & 8 & 11
\end{array}\right]\left[\begin{array}{l}
J \\
C \\
D
\end{array}\right]=\left[\begin{array}{c}
2,253,453 \\
0 \\
19,074,057
\end{array}\right]
\end{aligned}
$$

Solution

The correct answer is (B).

Let J, C, and D be the inheritance portions of Jim, Corey and David, respectively.

The total inheritance is $\$ 2,253,453$ gives

$$
J+C+D=\$ 2,253,453
$$

Corey's trust is three times that of David's

$$
C=3 D
$$

gives

$$
C-3 D=0
$$

The three trusts of Jim, Corey and David pay an interest of $6 \%, 8 \%, 11 \%$, respectively. The total interest of all the three trusts combined at the end of the first year is $\$ 190,740.57$.
The total interest is

$$
\frac{6}{100} J+\frac{8}{100} C+\frac{11}{100} D=\$ 190,740.57
$$

gives
$0.06 J+0.08 C+0.11 D=\$ 190,740.57$
Three equations can be made from the information given
$J+C+D=\$ 2,253,453$
$C-3 D=0$
$0.06 J+0.08 C+0.11 D=\$ 190,740.57$
Setting the three equations in matrix form is as follows

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & -3 \\
0.06 & 0.08 & 0.11
\end{array}\right]\left[\begin{array}{l}
J \\
C \\
D
\end{array}\right]=\left[\begin{array}{c}
2,253,453 \\
0 \\
190,740.57
\end{array}\right]
$$

