Holistic Numerical Methods Institute

committed to bringing numerical methods to undergraduates

Multiple-Choice Test

Chapter 4.01
Introduction

COMPLETE SOLUTION SET

1. For an $n \times n$ upper triangular matrix $[A]$,
(A) $a_{i j}=0, i>j$
(B) $a_{i j}=0, j>i$
(C) $a_{i j} \neq 0, i>j$
(D) $a_{i j} \neq 0, j>i$

Solution

The correct answer is (A).
A $n \times n$ matrix $[A]$ is upper triangular if $a_{i j}=0, i>j$ for all i, j. A matrix being upper triangular has nothing to do with whether any of the elements $a_{i j}, j>i$ are non-zero or not.
A matrix like

$$
\left[\begin{array}{lll}
6 & 7 & 3 \\
0 & 4 & 5 \\
0 & 0 & 6
\end{array}\right]
$$

is upper triangular because $a_{i j}=0, i>j$ for all i, j.

A matrix like

$$
\left[\begin{array}{lll}
6 & 7 & 0 \\
0 & 4 & 5 \\
0 & 0 & 6
\end{array}\right]
$$

is upper triangular because $a_{i j}=0, i>j$ for all i, j. Note that $a_{13}=0$ does not affect the upper triangular nature of the matrix.
2. Which one of these square matrices is strictly diagonally dominant?
(A) $\left[\begin{array}{ccc}5 & 7 & 0 \\ 3 & -6 & 2 \\ 2 & 2 & 9\end{array}\right]$
(B) $\left[\begin{array}{ccc}7 & -5 & -2 \\ 6 & -13 & -7 \\ 6 & -7 & -13\end{array}\right]$
(C) $\left[\begin{array}{ccc}8 & -5 & -2 \\ 6 & -14 & -7 \\ 6 & -7 & -13\end{array}\right]$
(D) $\left[\begin{array}{ccc}8 & 5 & 2 \\ 6 & 14 & 7 \\ 6 & 7.5 & 14\end{array}\right]$

Solution

The correct answer is (D).
For a square matrix $[A]_{n \times n}$ to be strictly diagonally dominant, then

$$
\left|a_{i i}\right|>\sum_{\substack{i=1 \\ i \neq j}}^{n}\left|a_{i j}\right|
$$

must be true for all i.
The matrix in choice (A),

$$
[A]=\left[\begin{array}{ccc}
5 & 7 & 0 \\
3 & -6 & 2 \\
2 & 2 & 9
\end{array}\right]
$$

is not strictly diagonally dominant as it does not meet the requirement for Row 1 .

$$
\begin{aligned}
& \left|a_{11}\right|>\left|a_{12}\right|+\left|a_{13}\right| \\
& |5|>|7|+|0|
\end{aligned}
$$

$$
5>7 \text { is not true. }
$$

The matrix in choice (B),

$$
[B]=\left[\begin{array}{ccc}
7 & -5 & -2 \\
6 & -13 & -7 \\
6 & -7 & -13
\end{array}\right]
$$

is not strictly diagonally dominant as it does not meet the requirement for Row 1.

$$
\begin{aligned}
& \left|b_{11}\right|>\left|b_{12}\right|+\left|b_{13}\right| \\
& |7|>|-5|+|-2|
\end{aligned}
$$

$7>7$ is not true.
The matrix in choice (C),

$$
[C]=\left[\begin{array}{ccc}
8 & -5 & -2 \\
6 & -14 & -7 \\
6 & -7 & -13
\end{array}\right]
$$

is not strictly diagonally dominant as it meets all the requirements for Rows 1 and 2 but not for Row 3.

For Row 1

$$
\begin{aligned}
& \left|c_{11}\right|>\left|c_{12}\right|+\left|c_{13}\right| \\
& |8|>|-5|+|-2| \\
& 8>7 \text { is true. }
\end{aligned}
$$

For Row 2

$$
\begin{aligned}
& \left|c_{22}\right|>\left|c_{21}\right|+\left|c_{23}\right| \\
& |-14|>|6|+|-7| \\
& 14>13 \text { is true. }
\end{aligned}
$$

For Row 3

$$
\begin{aligned}
& \left|c_{33}\right|>\left|c_{31}\right|+\left|c_{32}\right| \\
& |-13|>|6|+|-7|
\end{aligned}
$$

$$
13>13 \text { is not true. }
$$

Hence $[C]$ is not strictly diagonally dominant.
The matrix in choice (D)

$$
[D]=\left[\begin{array}{ccc}
8 & 5 & 2 \\
6 & 14 & 7 \\
6 & 7.5 & 14
\end{array}\right]
$$

is strictly diagonally dominant as it meets the requirements for all rows $-1,2,3$.

For Row 1

$$
\begin{aligned}
& \left|d_{11}\right|>\left|d_{12}\right|+\left|d_{13}\right| \\
& |8|>|5|+|2| \\
& 8>7 \text { is true. }
\end{aligned}
$$

For Row 2

$$
\begin{aligned}
& \left|d_{22}\right|>\left|d_{21}\right|+\left|d_{23}\right| \\
& |14|>|6|+|7| \\
& 14>13 \text { is true. }
\end{aligned}
$$

For Row 3

$$
\left|d_{33}\right|>\left|d_{31}\right|+\left|d_{32}\right|
$$

$$
|14|>|7.5|+|6|
$$

$$
14>13.5 \text { is true. }
$$

Hence, $[D]$ is strictly diagonally dominant.
3. The order of the following matrix is

$$
\left[\begin{array}{cccc}
4 & -6 & -7 & 2 \\
3 & 2 & -5 & 6
\end{array}\right]
$$

(A) 4×2
(B) 2×4
(C) 8×1
(D) not defined

Solution

The correct answer is (B).
The order of the matrix is determined by the number of rows and columns. The matrix

$$
\left[\begin{array}{cccc}
4 & -6 & -7 & 2 \\
3 & 2 & -5 & 6
\end{array}\right]
$$

has 2 rows and 4 columns. The order of the matrix then is 2×4.
4. To make the following two matrices equal

$$
\begin{aligned}
& {[A]=\left[\begin{array}{ccc}
5 & -6 & 7 \\
3 & 2 & 5
\end{array}\right]} \\
& {[B]=\left[\begin{array}{lll}
5 & p & 7 \\
3 & 2 & 5
\end{array}\right]}
\end{aligned}
$$

the value of p is
(A) -6
(B) 6
(C) 0
(D) 7

Solution

The correct answer is (A).
Two matrices $[A]$ and $[B]$ are equal if they are of the same order and $a_{i j}=b_{i j}$ for all i, j. For $[A]$ and $[B]$ to be equal, we find that if $b_{12}=-6=p$, then the two matrices are equal. The matrices $[A]$ and $[B]$ are both of the same order 2×3 and $a_{i j}=b_{i j}$ for all i, j.
5. For a square $n \times n$ matrix $[A]$ to be an identity matrix,
(A) $a_{i j} \neq 0, i=j ; a_{i j}=0, i=j$
(B) $a_{i j}=0, i \neq j ; a_{i j}=1, i=j$
(C) $a_{i j}=0, i \neq j ; a_{i j}=i, i=j$
(D) $a_{i j}=0, i \neq j ; a_{i j}>0, i=j$

Solution

The correct answer is (B).
A square $n \times n$ matrix $[A]$ is an identity matrix if all the off-diagonal elements are zero and the diagonal elements are one. Hence

$$
\begin{aligned}
& a_{i j}=0 \text { for } i \neq j \text { for all } i, j \\
& a_{i j}=1 \text { for } i=j \text { for all } i, j .
\end{aligned}
$$

An example of an identity matrix is

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

6. To make the following square matrix to be diagonally dominant, the value of p needs to be

$$
\left[\begin{array}{ccc}
6 & -2 & -4 \\
7 & 9 & 1 \\
8 & -5 & p
\end{array}\right]
$$

(A) greater than or equal to 13
(B) greater than 3
(C) greater than or equal to 3
(D) greater than 13

Solution

The correct answer is (A).
A square $n \times n$ matrix $[A]$ is considered to be diagonally dominant if $\left|a_{i i}\right| \geq \sum_{\substack{j=1 \\ i \neq j}}^{n}\left|a_{i j}\right|$
for all i. and

$$
\left|a_{i i}\right|>\sum_{\substack{j=1 \\ i \neq j}}^{n}\left|a_{i j}\right|
$$

for at least one i.
For Row 1

$$
\begin{aligned}
& \left|a_{11}\right| \geq\left|a_{12}\right|+\left|a_{13}\right| \\
& |6| \geq|-2|+|-4|
\end{aligned}
$$

$$
6 \geq 6 \text { is true. }
$$

For Row 2

$$
\begin{aligned}
& \left|a_{22}\right| \geq\left|a_{21}\right|+\left|a_{23}\right| \\
& |9| \geq|7|+|1| \\
& 9 \geq 8 \text { is true. }
\end{aligned}
$$

For Row 3

$$
\begin{aligned}
& \left|a_{33}\right| \geq\left|a_{31}\right|+\left|a_{32}\right| \\
& |p| \geq|8|+|-5| \\
& p \geq 13 \text { needs to be true. }
\end{aligned}
$$

So, p greater than or equal to 13 is the right choice, along with the fact that the inequality is strictly met for Row 2 (that is, $9>8$).

