Holistic Numerical Methods Institute committed to bringing numerical methods to undergraduates

Multiple-Choice Test Chapter 04.02 Vectors

COMPLETE SOLUTION SET

1. A set of equations $4x_1 + 7x_2 + 11x_3 = 13$ $17x_1 + 39x_2 + 23x_3 = 31$ $13x_1 + 67x_2 + 59x_3 = 37$

can also be written as

(A)
$$x_1 \begin{bmatrix} 4\\17\\13 \end{bmatrix} + x_2 \begin{bmatrix} 7\\39\\23 \end{bmatrix} + x_3 \begin{bmatrix} 11\\23\\59 \end{bmatrix} = \begin{bmatrix} 13\\31\\37 \end{bmatrix}$$

(B) $4 \begin{bmatrix} x_1\\x_2\\x_3 \end{bmatrix} + 39 \begin{bmatrix} x_1\\x_2\\x_3 \end{bmatrix} + 59 \begin{bmatrix} x_1\\x_2\\x_3 \end{bmatrix} = \begin{bmatrix} 13\\31\\37 \end{bmatrix}$
(C) $x_1 \begin{bmatrix} 4\\7\\11 \end{bmatrix} + x_2 \begin{bmatrix} 17\\39\\23 \end{bmatrix} + x_3 \begin{bmatrix} 59\\23\\11 \end{bmatrix} = \begin{bmatrix} 13\\31\\37 \end{bmatrix}$
(D) $x_1 \begin{bmatrix} 13\\17\\4 \end{bmatrix} + x_2 \begin{bmatrix} 67\\39\\7 \end{bmatrix} + x_3 \begin{bmatrix} 59\\23\\11 \end{bmatrix} = \begin{bmatrix} 57\\13\\31 \end{bmatrix}$

Solution

The correct answer is (C).

The set of equations

$$4x_1 + 7x_2 + 11x_3 = 13$$

$$17x_1 + 39x_2 + 23x_3 = 31$$

$$13x_1 + 67x_2 + 59x_3 = 37$$

can be rewritten as two matrices being equal to each other as

$\begin{bmatrix} 4x_1 + 7x_2 + 11x_3 \end{bmatrix}$		[13]
$17x_1 + 39x_2 + 23x_3$	=	31
$13x_1 + 67x_2 + 59x_3$		37

and then as a linear combination as

$$x_{1}\begin{bmatrix} 4\\7\\11\end{bmatrix} + x_{2}\begin{bmatrix} 17\\39\\23\end{bmatrix} + x_{3}\begin{bmatrix} 13\\67\\59\end{bmatrix} = \begin{bmatrix} 13\\31\\37\end{bmatrix}$$

- 2. The magnitude of the vector, V = (5, -3, 2) is
- (A)4
- **(B)** 10
- (C) $\sqrt{38}$
- (D) $\sqrt{20}$

Solution

The correct answer is (C).

The magnitude of the vector, $\vec{v} = (5, -3, 2)$ is $\left| \vec{v} \right| = \sqrt{(5)^2 + (-3)^2 + (2)^2}$

$$\left| \overrightarrow{v} \right| = \sqrt{(5)^2 + (-3)^2 + (2)^2}$$

= $\sqrt{38}$

3. The rank of the vector

$$\vec{A} \begin{bmatrix} 2\\3\\7 \end{bmatrix}, \begin{bmatrix} 6\\9\\21 \end{bmatrix}, \begin{bmatrix} 3\\2\\7 \end{bmatrix}$$

(A) 1 (B) 2 (C) 3

is

(D)4

Solution

The correct answer is (B).

$$\vec{A}_{1} = \begin{bmatrix} 2\\3\\7 \end{bmatrix}$$
$$\vec{A}_{2} = \begin{bmatrix} 6\\9\\21 \end{bmatrix}$$
$$\vec{A}_{3} = \begin{bmatrix} 3\\2\\7 \end{bmatrix}$$

From inspection

$$\vec{A}_1 = \frac{1}{3}\vec{A}_2$$

which implies

$$1\vec{A}_1 - \frac{1}{3}\vec{A}_2 + 0\vec{A}_3 = \vec{0}$$

Hence

$$k_1 \vec{A}_1 + k_2 \vec{A}_2 + k_3 \vec{A}_3 = \vec{0}$$

has a non-trivial solution of $k_1 = 1, k_2 = -\frac{1}{3}, k_3 = 0$. $\vec{A}_1, \vec{A}_2, \vec{A}_3$ are hence, linearly dependent. The rank of vectors hence is not 3, but less than 3.

However,

$$k_2 \vec{A}_2 + k_3 \vec{A}_3 = \vec{0}$$

has only one solution and that is the trivial solution of $k_1 = 0, k_2 = 0$. So \vec{A}_2 and \vec{A}_3 are linearly independent. The rank of the vectors hence is 2.

4. If
$$\vec{A} = (5,2,3)$$
 and $\vec{B} = (6,-7,3)$, then $4\vec{A} + 5\vec{B}$ is
(A) (50,-5,6)
(B) (50,-27,27)
(C) (11,-5,6)
(D) (20,8,12)

Solution

The correct answer is (B).

$$\vec{A} = (5,2,3)$$

$$\vec{B} = (6,-7,3)$$

$$4\vec{A} + 5\vec{B} = 4(5,2,3) + 5(6,-7,3)$$

$$= (20,8,12) + (30,-35,15)$$

$$= (50,-27,27)$$

- 5. The dot product of two vectors \vec{A} and \vec{B}
- $\vec{A} = 3i + 5j + 7k$ $\vec{B} = 11i + 13j + 17k$ most nearly is (A) 14.80 (B) 33.00 (C) 56.00 (D) 217.0

Solution

The correct answer is (D).

The dot product of two vectors

$$\vec{u} = (u_x, u_y, u_z)$$

and

$$\vec{v} = \left(v_x, v_y, v_z\right)$$

is

$$\vec{u} \cdot \vec{v} = u_x v_x + u_y v_y + u_z v_z$$

= 3×11+5×13+7×17
= 217

6. The angle in degrees between two vectors \vec{u} and \vec{v}

 $\vec{u} = 3i + 5j + 7k$ $\vec{v} = 11i + 13j + 17k$ most nearly is (A) 8.124 (B) 11.47 (C) 78.52

(D) 81.88

Solution

The correct answer is (*A*).

The dot product of two vectors $\vec{u} = (u_x, u_y, u_z)$ and $\vec{v} = (v_x, v_y, v_z)$ is

$$u \cdot v = u_x v_x + u_y v_y + u_z v_z$$
$$= 3 \times 11 + 5 \times 13 + 7 \times 17$$
$$= 217$$

The dot product is also defined as

$$\vec{u}.\vec{v} = |u||v|\cos\theta$$

where

$$u = \sqrt{u_x^2 + u_y^2 + u_t^2}$$

= $\sqrt{3^2 + 5^2 + 7^2}$
= 9.110

and

$$v = \sqrt{v_x^2 + v_y^2 + v_z^2}$$

= $\sqrt{11^2 + 13^2 + 17^2}$
= 24.06

then

$$\vec{u} \cdot \vec{v} = |u||v| \cos \theta$$

= 9.110 × 24.06 cos θ
= 219.2 cos θ

Hence

~

$$219.2\cos\theta = 217$$
$$\cos\theta = \frac{217}{219.2}$$
$$= 0.9900$$

 $\theta = 8.124^{\circ}$