Holistic Numerical Methods Institute

committed to bringing numerical methods to undergraduates

Multiple-Choice Test

Chapter 04.02
Vectors
COMPLETE SOLUTION SET

1. A set of equations

$$
\begin{aligned}
& 4 x_{1}+7 x_{2}+11 x_{3}=13 \\
& 17 x_{1}+39 x_{2}+23 x_{3}=31 \\
& 13 x_{1}+67 x_{2}+59 x_{3}=37
\end{aligned}
$$

can also be written as
(A) $x_{1}\left[\begin{array}{c}4 \\ 17 \\ 13\end{array}\right]+x_{2}\left[\begin{array}{c}7 \\ 39 \\ 23\end{array}\right]+x_{3}\left[\begin{array}{l}11 \\ 23 \\ 59\end{array}\right]=\left[\begin{array}{l}13 \\ 31 \\ 37\end{array}\right]$
(B) $4\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]+39\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]+59\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}13 \\ 31 \\ 37\end{array}\right]$
(C) $x_{1}\left[\begin{array}{c}4 \\ 7 \\ 11\end{array}\right]+x_{2}\left[\begin{array}{l}17 \\ 39 \\ 23\end{array}\right]+x_{3}\left[\begin{array}{l}13 \\ 67 \\ 59\end{array}\right]=\left[\begin{array}{l}13 \\ 31 \\ 37\end{array}\right]$
(D) $x_{1}\left[\begin{array}{c}13 \\ 17 \\ 4\end{array}\right]+x_{2}\left[\begin{array}{c}67 \\ 39 \\ 7\end{array}\right]+x_{3}\left[\begin{array}{c}59 \\ 23 \\ 11\end{array}\right]=\left[\begin{array}{c}57 \\ 13 \\ 31\end{array}\right]$

Solution

The correct answer is (C).
The set of equations

$$
\begin{aligned}
& 4 x_{1}+7 x_{2}+11 x_{3}=13 \\
& 17 x_{1}+39 x_{2}+23 x_{3}=31 \\
& 13 x_{1}+67 x_{2}+59 x_{3}=37
\end{aligned}
$$

can be rewritten as two matrices being equal to each other as

$$
\left[\begin{array}{c}
4 x_{1}+7 x_{2}+11 x_{3} \\
17 x_{1}+39 x_{2}+23 x_{3} \\
13 x_{1}+67 x_{2}+59 x_{3}
\end{array}\right]=\left[\begin{array}{l}
13 \\
31 \\
37
\end{array}\right]
$$

and then as a linear combination as

$$
x_{1}\left[\begin{array}{c}
4 \\
7 \\
11
\end{array}\right]+x_{2}\left[\begin{array}{l}
17 \\
39 \\
23
\end{array}\right]+x_{3}\left[\begin{array}{l}
13 \\
67 \\
59
\end{array}\right]=\left[\begin{array}{c}
13 \\
31 \\
37
\end{array}\right]
$$

2. The magnitude of the vector, $V=(5,-3,2)$ is
(A) 4
(B) 10
(C) $\sqrt{38}$
(D) $\sqrt{20}$

Solution

The correct answer is (C).

The magnitude of the vector, $\vec{v}=(5,-3,2)$ is
$|\vec{v}|=\sqrt{(5)^{2}+(-3)^{2}+(2)^{2}}$
$=\sqrt{38}$
3. The rank of the vector
$\vec{A}\left[\begin{array}{l}2 \\ 3 \\ 7\end{array}\right],\left[\begin{array}{c}6 \\ 9 \\ 21\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 7\end{array}\right]$
is
(A) 1
(B) 2
(C) 3
(D) 4

Solution

The correct answer is (B).

$$
\begin{aligned}
& \vec{A}_{1}=\left[\begin{array}{l}
2 \\
3 \\
7
\end{array}\right] \\
& \vec{A}_{2}=\left[\begin{array}{l}
6 \\
9 \\
21
\end{array}\right] \\
& \vec{A}_{3}=\left[\begin{array}{l}
3 \\
2 \\
7
\end{array}\right]
\end{aligned}
$$

From inspection

$$
\vec{A}_{1}=\frac{1}{3} \vec{A}_{2}
$$

which implies
$1 \vec{A}_{1}-\frac{1}{3} \vec{A}_{2}+0 \vec{A}_{3}=\overrightarrow{0}$
Hence

$$
k_{1} \vec{A}_{1}+k_{2} \vec{A}_{2}+k_{3} \vec{A}_{3}=\overrightarrow{0}
$$

has a non-trivial solution of $k_{1}=1, k_{2}=-\frac{1}{3}, k_{3}=0 . \vec{A}_{1}, \vec{A}_{2}, \vec{A}_{3}$ are hence, linearly dependent. The rank of vectors hence is not 3 , but less than 3 .

However,

$$
k_{2} \vec{A}_{2}+k_{3} \vec{A}_{3}=\overrightarrow{0}
$$

has only one solution and that is the trivial solution of $k_{1}=0, k_{2}=0$. So \vec{A}_{2} and \vec{A}_{3} are linearly independent. The rank of the vectors hence is 2 .
4. If $\vec{A}=(5,2,3)$ and $\vec{B}=(6,-7,3)$, then $4 \vec{A}+5 \vec{B}$ is
(A) $(50,-5,6)$
(B) $(50,-27,27)$
(C) $(11,-5,6)$
(D) $(20,8,12)$

Solution

The correct answer is (B).

$$
\begin{aligned}
& \vec{A}=(5,2,3) \\
& \begin{aligned}
& \vec{B}=(6,-7,3) \\
& 4 \vec{A}+5 \vec{B}=4(5,2,3)+5(6,-7,3) \\
&=(20,8,12)+(30,-35,15) \\
&=(50,-27,27)
\end{aligned}
\end{aligned}
$$

5. The dot product of two vectors \vec{A} and \vec{B}

$$
\begin{aligned}
& \vec{A}=3 i+5 j+7 k \\
& \vec{B}=11 i+13 j+17 k
\end{aligned}
$$

most nearly is
(A) 14.80
(B) 33.00
(C) 56.00
(D) 217.0

Solution

The correct answer is (D).
The dot product of two vectors

$$
\vec{u}=\left(u_{x}, u_{y}, u_{z}\right)
$$

and

$$
\vec{v}=\left(v_{x}, v_{y}, v_{z}\right)
$$

is

$$
\begin{aligned}
\vec{u} \cdot \vec{v} & =u_{x} v_{x}+u_{y} v_{y}+u_{z} v_{z} \\
& =3 \times 11+5 \times 13+7 \times 17 \\
& =217
\end{aligned}
$$

6. The angle in degrees between two vectors \vec{u} and \vec{v}

$$
\begin{aligned}
& \vec{u}=3 i+5 j+7 k \\
& \vec{v}=11 i+13 j+17 k
\end{aligned}
$$

most nearly is
(A) 8.124
(B) 11.47
(C) 78.52
(D) 81.88

Solution

The correct answer is (A).
The dot product of two vectors $\vec{u}=\left(u_{x}, u_{y}, u_{z}\right)$ and $\vec{v}=\left(v_{x}, v_{y}, v_{z}\right)$ is

$$
\begin{aligned}
\vec{u} \cdot \vec{v} & =u_{x} v_{x}+u_{y} v_{y}+u_{z} v_{z} \\
& =3 \times 11+5 \times 13+7 \times 17 \\
& =217
\end{aligned}
$$

The dot product is also defined as

$$
\vec{u} \cdot \vec{v}=|u| v \mid \cos \theta
$$

where

$$
\begin{aligned}
u & =\sqrt{u_{x}^{2}+u_{y}^{2}+u_{t}^{2}} \\
& =\sqrt{3^{2}+5^{2}+7^{2}} \\
& =9.110
\end{aligned}
$$

and

$$
\begin{aligned}
v & =\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}} \\
& =\sqrt{11^{2}+13^{2}+17^{2}} \\
& =24.06
\end{aligned}
$$

then

$$
\begin{aligned}
\vec{u} \cdot \vec{v} & =|u| v \mid \cos \theta \\
& =9.110 \times 24.06 \cos \theta \\
& =219.2 \cos \theta
\end{aligned}
$$

Hence

$$
219.2 \cos \theta=217
$$

$$
\cos \theta=\frac{217}{219.2}
$$

$$
=0.9900
$$

$\theta=8.124^{\circ}$

