Multiple-Choice Test

 (x_2, y_2) is

1.

Chapter 05.01 Background on Interpolation

	(C)	0 1 2 infinite
2.	points. (A) (B) (C)	polynomial of degree passes through $n+1$ data $n+1$ $n+1$ or less n n or less
3.	(A) (B) (C)	ving function(s) can be used for interpolation: polynomial exponential trigonometric all of the above
4.	easy to (A) (B)	evaluate differentiate integrate evaluate, differentiate and integrate
5.	function j required to (A) (B)	and the data points $(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1}), (x_n, y_n)$, assume you pass a $f(x)$ through all the data points. If now the value of the function $f(x)$ is to be found outside the range of the given x -data, the procedure is called extrapolation interpolation guessing regression

The number of polynomials that can go through two fixed data points (x_1, y_1) and

05.01.2 Chapter 05.01

6. Given three data points (1,6), (3,28), and (10, 231), it is found that the function $y = 2x^2 + 3x + 1$ passes through the three data points. Your estimate of y at x = 2 is most nearly

- (A) 6
- (B) 15 (C) 17
- (D) 28

For a complete solution, refer to the links at the end of the book.