Holistic Numerical Methods Institute

committed to bringing numerical methods to undergraduates

Multiple-Choice Test

Background

Integration

COMPLETE SOLUTION SET

1. Physically, integrating $\int_{a}^{b} f(x) d x$ means finding the
(A) area under the curve from a to b
(B) area to the left of point a
(C) area to the right of point b
(D) area above the curve from a to b

Solution

The correct answer is (A).

Integrating $\int_{a}^{b} f(x) d x$ means finding the area under the curve of the function $f(x)$ from a to b.

2. The mean value of a function $f(x)$ from a to b is given by
(A) $\frac{f(a)+f(b)}{2}$
(B) $\frac{f(a)+2 f\left(\frac{a+b}{2}\right)+f(b)}{4}$
(C) $\int_{a}^{b} f(x) d x$
(D) $\frac{\int_{a}^{b} f(x) d x}{b-a}$

Solution

The correct answer is (D).
The mean value of a function $f(x)$ from a to b is given by

$$
\begin{aligned}
\bar{f} & =\frac{\text { Area unde }}{\text { Width of }} \\
& =\frac{\int_{a}^{b} f(x) d x}{b-a}
\end{aligned}
$$

3. The exact value of $\int_{0.2}^{2.2} x e^{x} d x$ is most nearly
(A) 7.8036
(B) 11.807
(C) 14.034
(D) 19.611

Solution

The correct answer is (B).
To solve this integral we must integrate by parts.

$$
\int u d v=u v-\int v d u
$$

where
$u=x$
$d u=d x$
and

$$
\begin{aligned}
& d v=e^{x} d x \\
& v=e^{x} \\
& \begin{aligned}
\int_{0.2}^{2.2} x e^{x} d x & =\int_{0.2}^{2.2} x d\left(e^{x}\right) \\
& =\left[x e^{x}\right]_{0.2}^{2.2}-\int_{0.2}^{2.2} e^{x} d x \\
& =\left[x e^{x}-e^{x}\right]_{0.2}^{2.2} \\
& =\left(2.2 e^{2.2}-e^{2.2}\right)-\left(0.2 e^{0.2}-e^{0.2}\right) \\
& =10.83-(-0.9771) \\
& =11.807
\end{aligned}
\end{aligned}
$$

4. $\int_{0.2}^{2} f(x) d x$ for

$$
\begin{aligned}
f(x) & =x, & 0 & \leq x \leq 1.2 \\
& =x^{2}, & 1.2 & <x \leq 2.4
\end{aligned}
$$

is most nearly
(A) 1.9800
(B) 2.6640
(C) 2.7907
(D) 4.7520

Solution

The correct answer is (C).

$$
\begin{aligned}
\int_{0.2}^{2} f(x) d x & =\int_{0.2}^{1.2} x d x+\int_{1.2}^{2} x^{2} d x \\
& =\left[\frac{1}{2} x^{2}\right]_{0.2}^{1.2}+\left[\frac{1}{3} x^{3}\right]_{1.2}^{2} \\
& =\left(\frac{1.2^{2}}{2}-\frac{0.2^{2}}{2}\right)+\left(\frac{2^{3}}{3}-\frac{1.2^{3}}{3}\right) \\
& =0.7+2.0907 \\
& =2.7907
\end{aligned}
$$

5. The area of a circle of radius a can be found by the following integral
(A) $\int_{0}^{a}\left(a^{2}-x^{2}\right) d x$
(B) $\int_{0}^{2 \pi} \sqrt{a^{2}-x^{2}} d x$
(C) $4 \int_{0}^{a} \sqrt{a^{2}-x^{2}} d x$
(D) $\int_{0}^{a} \sqrt{a^{2}-x^{2}} d x$

Solution

The correct answer is (C).
The equation for a circle of radius a is

$$
\begin{aligned}
& y^{2}+x^{2}=a^{2} \\
& y=\sqrt{a^{2}-x^{2}}
\end{aligned}
$$

To find the area of the shaded quarter circle shown, we can find the area under the curve of the integral of $y=\sqrt{a^{2}-x^{2}}$ from 0 to a.

$$
A=\int_{0}^{a} \sqrt{a^{2}-x^{2}} d x
$$

Thus, the area of the full circle is four times the quarter circle

$$
A=4 \int_{0}^{a} \sqrt{a^{2}-x^{2}} d x
$$

6. Velocity distribution of a fluid flow through a pipe varies along the radius and is given by $v(r)$. The flow rate through the pipe of radius a is given by
(A) $\pi v(a) a^{2}$
(B) $\pi \frac{v(0)+v(a)}{2} a^{2}$
(C) $\int_{0}^{a} v(r) d r$
(D) $2 \pi \int_{0}^{a} v(r) r d r$

Solution

The correct answer is (D).

The differential area is the area bound by the concentric circles and is given by

$$
\begin{aligned}
d A & =\pi(r+d r)^{2}-\pi r^{2} \\
& =\pi r^{2}+\pi(d r)^{2}+2 \pi r d r-\pi r^{2} \\
& =2 \pi r d r+\pi(d r)^{2}
\end{aligned}
$$

Since

$$
(d r)^{2} \ll d r
$$

we have

$$
d A \approx 2 \pi r d r
$$

The flow rate $d \dot{Q}$ through the differential element of the pipe is

$$
\begin{aligned}
d \dot{Q} & =(\text { velocity }) \times(\text { differential area }) \\
& =(v(r)) \times(2 \pi r d r) \\
\dot{Q} & =\int_{0}^{a} v(r) 2 \pi r d r \\
& =2 \pi \int_{0}^{a} v(r) r d r
\end{aligned}
$$

