Holistic Numerical Methods Institute

committed to bringing numerical methods to undergraduates

Multiple-Choice Test Runge-Kutta 4th Order Method Ordinary Differential Equations

COMPLETE SOLUTION SET

1. To solve the ordinary differential equation

$$3\frac{dy}{dx} + xy^2 = \sin x, y(0) = 5$$
,

by Runge-Kutta 4th order method, you need to rewrite the equation as

$$(A) \frac{dy}{dx} = \sin x - xy^2, y(0) = 5$$

(B)
$$\frac{dy}{dx} = \frac{1}{3} (\sin x - xy^2), y(0) = 5$$

(C)
$$\frac{dy}{dx} = \frac{1}{3} \left(-\cos x - \frac{xy^3}{3} \right), y(0) = 5$$

(D)
$$\frac{dy}{dx} = \frac{1}{3}\sin x, y(0) = 5$$

Solution

The correct answer is (B)

$$3\frac{dy}{dx} + xy^2 = \sin x, y(0) = 5$$

is rewritten as

$$3\frac{dy}{dx} = \sin x - xy^2, y(0) = 5$$

$$\frac{dy}{dx} = \frac{1}{3} \left(\sin x - xy^2 \right), y(0) = 5$$

2. Given $3\frac{dy}{dx} + 5y^2 = \sin x$, y(0.3) = 5 and using a step size of h = 0.3, the value of y(0.9) using

Runge-Kutta 4th order method is most nearly

(A)
$$-0.25011 \times 10^{40}$$

$$(C)$$
 -1261.5

Solution

The correct answer is (C)

$$3\frac{dy}{dx} + 5y^2 = \sin x, y(0.3) = 5$$

is rewritten as

$$\frac{dy}{dx} = \frac{1}{3} (\sin x - 5y^2), y(0.3) = 5$$

the Runge-Kutta 4th order method is

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)h$$

where

$$k_{1} = f(x_{i}, y_{i})$$

$$k_{2} = f\left(x_{i} + \frac{1}{2}h, y_{i} + \frac{1}{2}k_{1}h\right)$$

$$k_{3} = f\left(x_{i} + \frac{1}{2}h, y_{i} + \frac{1}{2}k_{2}h\right)$$

$$k_{4} = f\left(x_{i} + h, y_{i} + k_{3}h\right)$$

for
$$i = 0$$
, $x_0 = 0.3$, $y_0 = 5$

$$k_1 = f(x_0, y_0)$$

$$= f(0.3,5)$$

$$= \frac{1}{3} (\sin 0.3 - 5(5)^2)$$

$$= -41.5682$$

$$k_2 = f\left(x_0 + \frac{1}{2}h, y_0 + \frac{1}{2}k_1h\right)$$

$$= f\left(0.3 + \frac{1}{2} \times 0.3, 5 + \frac{1}{2} \times -41.5682 \times 0.3\right)$$

$$= f\left(0.45, -1.23523\right)$$

$$= \frac{1}{3}\left(\sin 0.45 - 5\left(-1.23523\right)^2\right)$$

$$= -2.398$$

$$k_3 = f\left(x_0 + \frac{1}{2}h, y_0 + \frac{1}{2}k_2h\right)$$

$$= f\left(0.3 + \frac{1}{2} \times 0.3, 5 + \frac{1}{2} \times -2.398 \times 0.3\right)$$

$$= f\left(0.45, 4.6403\right)$$

$$= \frac{1}{3}\left(\sin 0.45 - 5\left(4.6403\right)^2\right)$$

$$= -35.7423$$

$$k_4 = f\left(x_0 + h, y_0 + k_3h\right)$$

$$= f\left(0.3 + 0.3, 5 + -35.7423 \times 0.3\right)$$

$$= f\left(0.6, -5.72269\right)$$

$$= \frac{1}{3}\left(\sin 0.6 - 5\left(-5.72269\right)\right)$$

$$= -54.3938$$

$$y_1 = y_0 + \frac{1}{6}\left(k_1 + 2k_2 + 2k_3 + k_4\right)h$$

$$= 5 + \frac{1}{6}\left(-41.5682 - 2 \times 2.398 - 2 \times 35.7423 - 54.3938\right) \times 0.3$$

$$= -3.61213$$

$$x_1 = x_0 + h$$

$$= 0.3 + 0.3$$

$$= 0.6$$
for $i = 1, x_1 = 0.6, y_1 = -3.61213$

$$k_1 = f\left(x_1, y_1\right)$$

$$= f\left(0.6, -3.61213\right)$$

$$= \frac{1}{3}\left(\sin 0.6 - 5\left(-3.61213\right)^2\right)$$

$$= -21.5576$$

$$k_2 = f\left(x_1 + \frac{1}{2}h, y_1 + \frac{1}{2}k_1h\right)$$

$$= f\left(0.6 + \frac{1}{2} \times 0.3, -3.61213 + \frac{1}{2} \times -21.5576 \times 0.3\right)$$

$$= f\left(0.75, -6.84577\right)$$

 $=\frac{1}{3}\left(\sin 0.75-5(-6.84577)^2\right)$

=-77.8804

$$k_{3} = f\left(x_{1} + \frac{1}{2}h, y_{1} + \frac{1}{2}k_{2}h\right)$$

$$= f\left(0.6 + \frac{1}{2} \times 0.3, -3.61213 + \frac{1}{2} \times -77.8804 \times 0.3\right)$$

$$= f\left(0.75, -15.2942\right)$$

$$= \frac{1}{3}\left(\sin 0.75 - 5\left(-15.2942\right)^{2}\right)$$

$$= -389.627$$

$$k_{4} = f\left(x_{0} + h, y_{0} + k_{3}h\right)$$

$$= f\left(0.6 + 0.3, -3.61213 + -389.627 \times 0.3\right)$$

$$= f\left(0.9, -120.5\right)$$

$$= \frac{1}{3}\left(\sin 0.9 - 5\left(-120.5\right)\right)$$

$$= -24200.2$$

$$y_{2} = y_{1} + \frac{1}{6}\left(k_{1} + 2k_{2} + 2k_{3} + k_{4}\right)h$$

$$= -3.61213 + \frac{1}{6}\left(-21.5576 - 2 \times 77.8804 - 2 \times 389.627 - 24200.2\right) \times 0.3$$

$$= -1261.45$$

$$x_{2} = x_{1} + h$$

$$= 0.6 + 0.3$$

$$= 0.9$$

$$y\left(x_{2}\right) \cong -1261.45$$

$$y\left(0.9\right) \cong -1261.45$$

3. Given $3\frac{dy}{dx} + y^2 = e^x$, y(0.3) = 5, and using a step size of h = 0.3, the best estimate of $\frac{dy}{dx}(0.9)$

Runge-Kutta 4th order method is most nearly

- (A) -1.6604
- (B) -1.1785
- (C) -0.45831
- (D) 2.7270

Solution

The correct answer is (A)

$$3\frac{dy}{dx} + y^2 = e^x, y(0.3) = 5$$

is rewritten as

$$\frac{dy}{dx} = \frac{1}{3} (e^x - y^2), y(0.3) = 5$$

the Runge-Kutta 4th order method is

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)h$$

where

$$k_{1} = f(x_{i}, y_{i})$$

$$k_{2} = f\left(x_{i} + \frac{1}{2}h, y_{i} + \frac{1}{2}k_{1}h\right)$$

$$k_{3} = f\left(x_{i} + \frac{1}{2}h, y_{i} + \frac{1}{2}k_{2}h\right)$$

$$k_{4} = f(x_{i} + h, y_{i} + k_{3}h)$$

for
$$i = 0$$
, $x_0 = 0.3$, $y_0 = 5$

$$k_1 = f(x_0, y_0)$$

$$= f(0.3,5)$$

$$= \frac{1}{3} (e^{0.3} - (5)^2)$$

$$= -7.8833$$

$$k_2 = f\left(x_0 + \frac{1}{2}h, y_0 + \frac{1}{2}k_1h\right)$$

$$= f\left(0.3 + \frac{1}{2} \times 0.3, 5 + \frac{1}{2} \times -7.8833 \times 0.3\right)$$

$$= f\left(0.45, 3.81751\right)$$

$$= \frac{1}{3}\left(e^{0.45} - \left(3.81751\right)^2\right)$$

$$= -4.33502$$

$$k_{3} = f\left(x_{0} + \frac{1}{2}h, y_{0} + \frac{1}{2}k_{2}h\right)$$

$$= f\left(0.3 + \frac{1}{2} \times 0.3, 5 + \frac{1}{2} \times -4.33502 \times 0.3\right)$$

$$= f\left(0.45, 4.34975\right)$$

$$= \frac{1}{3}(e^{0.45} - 4.34975^{2})$$

$$= -5.784$$

$$k_{4} = f\left(x_{0} + h, y_{0} + k_{3}h\right)$$

$$= f\left(0.3 + 0.3, 5 + -5.784 \times 0.3\right)$$

$$= f\left(0.6, 3.2648\right)$$

$$= \frac{1}{3}(e^{0.6} - 3.2648^{2})$$

$$= -2.9456$$

$$y_{1} = y_{0} + \frac{1}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4})h$$

$$= 5 + \frac{1}{6}(-7.88338 - 2 \times 4.33502 - 2 \times 5.784 - 2.9456) \times 0.3$$

$$= 3.44665$$
for $i = 1, x_{1} = 0.6, y_{1} = 3.44665$

$$k_{1} = f\left(x_{1}, y_{1}\right)$$

$$= f\left(0.6, 3.44665\right)$$

$$= \frac{1}{3}(e^{0.6} - 3.44665^{2})$$

$$= -3.35243$$

$$k_{2} = f\left(x_{1} + \frac{1}{2}h, y_{1} + \frac{1}{2}k_{1}h\right)$$

$$= f\left(0.6 + \frac{1}{2} \times 0.3, 3.44665 + \frac{1}{2} \times -3.35243 \times 0.3\right)$$

$$= f\left(0.75, 2.94378\right)$$

$$= \frac{1}{3}(e^{0.75} - (2.94378)^{2})$$

$$= -2.18295$$

$$k_{3} = f\left(x_{1} + \frac{1}{2}h, y_{1} + \frac{1}{2}k_{2}h\right)$$

$$= f\left(0.6 + \frac{1}{2} \times 0.3, 3.44665 + \frac{1}{2} \times -2.18295 \times 0.3\right)$$

$$= f\left(0.75, 3.11921\right)$$

$$= \frac{1}{3}\left(e^{0.75} - \left(3.11921\right)^{2}\right)$$

$$= -2.53749$$

$$k_{4} = f\left(x_{0} + h, y_{0} + k_{3}h\right)$$

$$= f\left(0.6 + 0.3, 3.44665 - 2.53749 \times 0.3\right)$$

$$= f\left(0.9, 2.6854\right)$$

$$= \frac{1}{3}\left(e^{0.9} - \left(2.6854\right)^{2}\right)$$

$$= -1.58392$$

$$y_{2} = y_{1} + \frac{1}{6}\left(k_{1} + 2k_{2} + 2k_{3} + k_{4}\right)h$$

$$= 3.44665 + \frac{1}{6}\left(-3.35243 - 2 \times 2.18295 - 2 \times 2.53749 - 1.58392\right) \times 0.3$$

$$= 2.72779$$

$$x_{2} = x_{1} + h$$

$$= 0.6 + 0.3$$

$$= 0.9$$

$$\frac{dy}{dx} = \frac{1}{3}\left(e^{x} - y^{2}\right)$$

$$\frac{dy}{dx}\left(0.9\right) \approx \frac{1}{3}\left(e^{0.9} - \left(y(0.9)\right)^{2}\right)$$

$$\approx \frac{1}{3}\left(e^{0.9} - \left(2.72779\right)^{2}\right)$$

$$\approx -1.6604$$

4. The velocity (m/s) of a parachutist is given as a function of time (seconds) by

$$v(t) = 55.8 \tanh(0.17t), t \ge 0$$

Using Runge-Kutta 4th order method with a step size of 5 seconds, the distance traveled by the body from t = 2 to t = 12 seconds is estimated most nearly as

- (A) 341.43 m
- (B) 428.97 m
- (C) 429.05 m
- (D)703.50 m

Solution

The correct answer is (C)

$$v(t) = 55.8 \tanh(0.17t), t \ge 0$$

the Runge-Kutta 4th order method is

$$S_{i+1} = S_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)h$$

where

$$k_{1} = f(t_{i}, S_{i})$$

$$k_{2} = f\left(t_{i} + \frac{1}{2}h, S_{i} + \frac{1}{2}k_{1}h\right)$$

$$k_{3} = f\left(t_{i} + \frac{1}{2}h, S_{i} + \frac{1}{2}k_{2}h\right)$$

$$k_4 = f(t_i + h, S_i + k_3 h)$$

for
$$i = 0$$
, $t_0 = 2$, $S_0 = 0$

$$k_1 = f(t_0, S_0)$$

= $f(2.0)$

$$= 55.8 \tanh(0.17 \times 2)$$

$$=18.2732$$

$$k_2 = f\left(t_0 + \frac{1}{2}h, S_0 + \frac{1}{2}k_1h\right)$$

$$= f\left(2 + \frac{1}{2} \times 5, 0 + \frac{1}{2} \times 18.2732 \times 5\right)$$

$$= f\left(4.5.45.682\right)$$

$$= f(4.5,45.683)$$

$$= 55.8 \tanh(0.17 \times 4.5)$$

$$=35.9359$$

$$k_3 = f\left(t_0 + \frac{1}{2}h, S_0 + \frac{1}{2}k_2h\right)$$
$$= f\left(2 + \frac{1}{2} \times 5, 0 + \frac{1}{2} \times 35.9359 \times 5\right)$$

$$= f(4.5,89.8398)$$

$$= 55.8 \tanh(0.17 \times 4.5)$$

$$= 35.9359$$

$$k_4 = f(t_0 + h, S_0 + k_3 h)$$

$$= f(2 + 5,0 + 35.9359 \times 5)$$

$$= f(7,179.68)$$

$$= 55.8 \tanh(0.17 \times 7)$$

$$= 46.3463$$

$$S_1 = S_0 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)h$$

$$= 0 + \frac{1}{6}(18.2732 + 2 \times 35.9359 + 2 \times 35.9359 + 46.3463) \times 5$$

$$= 173.636$$

$$t_1 = t_0 + h$$

$$= 2 + 5$$

$$= 7$$
for $i = 1, t_1 = 7, S_1 = 173.636$

$$k_1 = f(t_1, S_1)$$

$$= f(7,173.636)$$

$$= 55.8 \tanh(0.17 \times 7)$$

$$= 46.3463$$

$$k_2 = f\left(t_1 + \frac{1}{2}h, S_1 + \frac{1}{2}k_1h\right)$$

$$= f\left(7 + \frac{1}{2} \times 5,173.636 + \frac{1}{2} \times 46.3463 \times 5\right)$$

$$= f(9.5,289.502)$$

$$= 55.8 \tanh(0.17 \times 9.5)$$

$$= 51.5534$$

$$k_3 = f\left(t_1 + \frac{1}{2}h, S_1 + \frac{1}{2}k_2h\right)$$

$$= f\left(7 + \frac{1}{2} \times 5,173.636 + \frac{1}{2} \times 51.5534 \times 5\right)$$

$$= f(9.5,302.52)$$

$$= 55.8 \tanh(0.17 \times 9.5)$$

$$= 51.5534$$

$$k_4 = f(t_1 + h, S_1 + k_3 h)$$

$$= f(7 + 5,173.636 + 51.5534 \times 5)$$

$$= f(12,431.403)$$

$$= 55.8 \tanh(0.17 \times 12)$$

$$= 53.9445$$

$$S_2 = S_1 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)h$$

$$= 173.636 + \frac{1}{6}(46.3463 + 2 \times 51.5534 + 2 \times 51.5534 + 53.9445) \times 5$$

$$= 429.05 m$$

$$t_2 = t_1 + h$$

$$= 7 + 5$$

$$= 12$$

The distance traveled from t = 2 to t = 12 is

Distance traveled =
$$S_2 - S_0$$

= $S(t_2) - S(t_0)$
= $S(12) - S(2)$
= $429.05 - 0$
= $429.05m$

5. Runge-Kutta method can be derived from using first three terms of Taylor series of writing the value of y_{i+1} , that is the value of y at x_{i+1} , in terms of y_i and all the derivatives of y at x_i . If $h = x_{i+1} - x_i$, the explicit expression for y_{i+1} if the first five terms of the Taylor series are chosen for the ordinary differential equation

$$\frac{dy}{dx} + 5y = 3e^{-2x}, y(0) = 7,$$

would be

(A)
$$y_{i+1} = y_i + (3e^{-2x_i} - 5y_i)h + \frac{5h^2}{2}$$

(B)
$$y_{i+1} = y_i + (3e^{-2x_i} - 5y_i)h + (-21e^{-2x_i} + 25y_i)\frac{h^2}{2} + (-483e^{-2x_i} + 625y_i)\frac{h^3}{6} + (-300909e^{-2x_i} + 390625y_i)\frac{h^4}{24}$$

(C)
$$y_{i+1} = y_i + \left(3e^{-2x_i} - 5y_i\right)h + \left(-6e^{-2x_i}\right)\frac{h^2}{2} + \left(12e^{-2x_i}\right)\frac{h^3}{6} + \left(-24e^{-2x_i}\right)\frac{h^4}{24}$$

(D)
$$y_{i+1} = y_i + \left(3e^{-2x_i} - 5y_i\right)h + \left(-6e^{-2x_i} + 5\right)\frac{h^2}{2} + \left(12e^{-2x_i}\right)\frac{h^3}{6} + \left(-24e^{-2x_i}\right)\frac{h^4}{24}$$

Solution

The correct answer is (B)

The first five terms of the Taylor series are as follows

$$y_{i+1} = y_i + f(x_i, y_i)h + \frac{1}{2!}f'(x_i, y_i)h^2 + \frac{1}{3!}f''(x_i, y_i)h^3 + \frac{1}{4!}f'''(x_i, y_i)h^4$$

our ordinary differential equation

$$\frac{dy}{dx} + 5y = 3e^{-2x}, y(0) = 7$$
$$f(x, y) = 3e^{-2x} - 5y$$

Now since v is a function of x,

$$f'(x,y) = \frac{\partial f(x,y)}{\partial x} + \frac{\partial f(x,y)}{\partial y} \frac{dy}{dx}$$
$$= \frac{\partial}{\partial x} (3e^{-2x} - 5y) + \frac{\partial}{\partial y} [(3e^{-2x} - 5y)](3e^{-2x} - 5y)$$

$$= -6e^{-2x} + (-5)(3e^{-2x} - 5y)$$

$$= -21e^{-2x} + 25y$$

$$f''(x,y) = \frac{\partial f'(x,y)}{\partial x} + \frac{\partial f'(x,y)}{\partial y} \frac{d^2y}{dx^2}$$

$$= \frac{\partial}{\partial x} \left(-21e^{-2x} + 25y \right) + \frac{\partial}{\partial y} \left[\left(-21e^{-2x} + 25y \right) \right] \left(-21e^{-2x} + 25y \right)$$

$$= 42e^{-2x} + (25)\left(-21e^{-2x} + 25y \right)$$

$$= -483e^{-2x} + 625y$$

$$f'''(x,y) = \frac{\partial f''(x,y)}{\partial x} + \frac{\partial f''(x,y)}{\partial y} \frac{d^3y}{dx^3}$$

$$= \frac{\partial}{\partial x} \left(-483e^{-2x} + 625y \right) + \frac{\partial}{\partial y} \left[\left(-483e^{-2x} + 625y \right) \right] \left(-483e^{-2x} + 625y \right)$$

$$= 966e^{-2x} + (625)\left(-483e^{-2x} + 625y \right)$$

$$= -3000909e^{-2x} + 390625y$$

The 4th order formula for the above example would be

$$y_{i+1} = y_i + f(x_i, y_i)h + \frac{1}{2!}f'(x_i, y_i)h^2 + \frac{1}{3!}f''(x_i, y_i)h^3 + \frac{1}{4!}f'''(x_i, y_i)h^4$$

$$y_{i+1} = y_i + (3e^{-2x_i} - 5y_i)h + (-21e^{-2x_i} + 25y_i)\frac{h^2}{2}$$

$$+ (-483e^{-2x_i} + 625y_i)\frac{h^3}{6} + (-300909e^{-2x_i} + 390625y_i)\frac{h^4}{24}$$

6. A hot solid cylinder is immersed in an cool oil bath as part of a quenching process. This process makes the temperature of the cylinder, θ_c , and the bath, θ_b , change with time. If the initial temperature of the bar and the oil bath is given as 600° C and 27°C, respectively, and

Length of cylinder = 30 cm

Radius of cylinder = 3 cm

Density of cylinder = 2700
$$\frac{kg}{m^3}$$

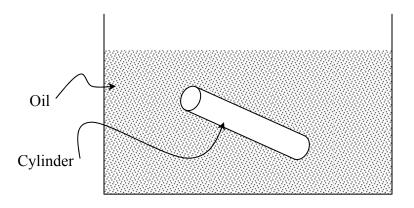
Specific heat of cylinder = 895
$$\frac{J}{kg \cdot K}$$

Convection heat transfer coefficient = 100 $\frac{W}{m^2 \cdot K}$

Specific heat of oil = 1910
$$\frac{J}{kg \cdot K}$$

Mass of oil = 2 kg

the coupled ordinary differential equation giving the heat transfer are given by



(A)
$$362.4 \frac{d\theta_c}{dt} + \theta_c = \theta_b$$
$$675.5 \frac{d\theta_b}{dt} + \theta_b = \theta_c$$

(B)
$$362.4 \frac{d\theta_c}{dt} - \theta_c = \theta_b$$

$$675.5 \frac{d\theta_b}{dt} - \theta_b = \theta_c$$

(C)
$$675.5 \frac{d\theta_c}{dt} + \theta_c = \theta_b$$

$$362.4 \frac{d\theta_b}{dt} + \theta_b = \theta_c$$

(B)
$$675.5 \frac{d\theta_c}{dt} - \theta_c = \theta_b$$

Solution

The correct answer is (A)

For the cylinder the rate of heat lost due to convection = $h(\theta)A(\theta_c - \theta_h)$.

where

 $h(\theta)$ = the convective cooling coefficient, $W/(m^2-K)$ and is a function of temperature A = surface area of the cylinder

The energy stored in the mass is given by

Energy stored by mass = m.C. θ

where

m = mass of the cylinder, kg

C = specific heat of the cylinder, J/(kg-K)

From an energy balance,

Rate at which heat is gained - Rate at which heat is lost =

= Rate at which heat is stored

gives

$$-h(\theta)A(\theta_c-\theta_b) = mC\frac{d\theta}{dt}$$

where

$$h(\theta) = 100 \ \frac{W}{m^2 \cdot K}$$

$$A = 2\pi r^{2} + 2\pi r L$$

$$= 2\pi (0.03)^{2} + 2\pi \times 0.03 \times 0.3$$

$$= 0.062204 m^{2}$$

$$m = \rho V$$

$$= 2700 \frac{kg}{m^3} \times (\pi r^2 \times L) m^3$$
$$= 2700 \times \pi (0.03)^2 \times 0.3$$
$$= 2.2902 kg$$

Thus

$$-h(\theta)A(\theta_c - \theta_b) = mC\frac{d\theta_c}{dt}$$

$$-100 \times 0.062204(\theta_c - \theta_b) = 2.2902 \times 895\frac{d\theta_c}{dt}$$

$$329.517\frac{d\theta_c}{dt} + \theta_c = \theta_b$$

Similarly for the oil

$$-h(\theta)A(\theta_b - \theta_c) = mC\frac{d\theta_b}{dt}$$

$$-100 \times 0.062204(\theta_b - \theta_c) = 2 \times 1910\frac{d\theta_b}{dt}$$

$$614.108\frac{d\theta_b}{dt} + \theta_b = \theta_c$$