Multiple-Choice Test

Chapter 10.02
Parabolic Partial Differential Equations

1. In a general second order linear partial differential equation with two independent variables

\[A \frac{\partial^2 u}{\partial x^2} + B \frac{\partial^2 u}{\partial x \partial y} + C \frac{\partial^2 u}{\partial y^2} + D = 0 \]

where \(A, B, C \) are functions of \(x \) and \(y \), and \(D \) is a function of \(x, y, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y} \),
then the partial differential equation is parabolic if

(A) \(B^2 - 4AC < 0 \)
(B) \(B^2 - 4AC > 0 \)
(C) \(B^2 - 4AC = 0 \)
(D) \(B^2 - 4AC \neq 0 \)

2. The region in which the following partial differential equation

\[x^3 \frac{\partial^2 u}{\partial x^2} + 27 \frac{\partial^2 u}{\partial y^2} + 3 \frac{\partial^2 u}{\partial x \partial y} + 5u = 0 \]

acts as parabolic equation is

(A) \(x > \left(\frac{1}{12} \right)^{1/3} \)
(B) \(x < \left(\frac{1}{12} \right)^{1/3} \)
(C) for all values of \(x \)
(D) \(x = \left(\frac{1}{12} \right)^{1/3} \)

3. The partial differential equation of the temperature in a long thin rod is given by

\[\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2} \]
If \(\alpha = 0.8 \text{cm}^2/\text{s} \), the initial temperature of rod is 40° C, and the rod is divided into three equal segments, the temperature at node 1 (using \(\Delta t = 0.1 \text{s} \)) by using an explicit solution at \(t = 0.2 \text{sec} \) is

(A) 40.7134°C
(B) 40.6882°C
(C) 40.7033°C
(D) 40.6956°C

4. The partial differential equation of the temperature in a long thin rod is given by

\[
\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}
\]

If \(\alpha = 0.8 \text{cm}^2/\text{s} \), the initial temperature of rod is 40° C, and the rod is divided into three equal segments, the temperature at node 1 (using \(\Delta t = 0.1 \text{s} \)) by using an implicit solution for \(t = 0.2 \text{sec} \) is

(A) 40.7134°C
(B) 40.6882°C
(C) 40.7033°C
(D) 40.6956°C
5. The partial differential equation of the temperature in a long thin rod is given by
\[\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2} \]

If \(\alpha = 0.8 \text{ cm}^2 / \text{s} \), the initial temperature of rod is \(40^\circ C \), and the rod is divided into three equal segments, the temperature at node 1 (using \(\Delta t = 0.1 \text{s} \)) by using a Crank-Nicolson solution for \(t = 0.2 \text{ sec} \) is
(A) 40.7134 \(^\circ\)C
(B) 40.6882 \(^\circ\)C
(C) 40.7033 \(^\circ\)C
(D) 40.6956 \(^\circ\)C

6. The partial differential equation of the temperature in a long thin rod is given by
\[\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2} \]

If \(\alpha = 0.8 \text{ cm}^2 / \text{s} \), the initial temperature of rod is \(40^\circ C \), and the rod is divided into three equal segments, the temperature at node 1 (using \(\Delta t = 0.1 \text{s} \)) by using an explicit solution at \(t = 0.2 \text{ sec} \) is
(For node 0, \(k \frac{\partial T}{\partial x} = h(T_a - T_0) \)), where \(k = 9 W/(m \cdot ^\circ C) \), \(h = 20 W/m^2 \), \(T_a = 25^\circ C \), and \(T_0 = \) (the temperature of rod at node 0)

(A) \(41.6478^\circ C \)
(B) \(38.4356^\circ C \)
(C) \(39.9983^\circ C \)
(D) \(37.5798^\circ C \)