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Forward Difference 
Approximation
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Figure 1 Graphical Representation of forward difference approximation of first derivative.
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Example 1

A new fuel for recreational boats being developed at the local university 
was tested at an area pond by a team of engineers. The interest is to 
document the environmental impact of the fuel – how quickly does the 
slick spread?  Table 1 shows the video camera record of the radius of the 
wave generated by a drop of the fuel that fell into the pond. 

Using the data

a)Compute the rate at which the radius of the drop was changing at   
seconds.

b)Estimate the rate at which the area of the contaminant was spreading 
across the pond at          seconds.

2=t

2=t
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Example 1 Cont.

Use Forward Divided Difference approximation of the first derivative to 
solve the above problem. Use a time step of 0.5 sec.

Time 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Radius 0 0.236 0.667 1.225 1.886 2.635 3.464 4.365 5.333

Table 1 Radius as a function of time.
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Example 1 Cont.
Solution
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(b) 2RArea π=
Time 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Area 0 0.17497 1.3977 4.7144 11.175 21.813 37.697 59.857 89.350
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Direct Fit Polynomials
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In this method, given data points

one can fit a order polynomial given by

To find the first derivative,

Similarly other derivatives can be found.
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Example 2-Direct Fit Polynomials

A new fuel for recreational boats being developed at the local university was tested at 
an area pond by a team of engineers. The interest is to document the environmental 
impact of the fuel – how quickly does the slick spread?  Table 2 shows the video 
camera record of the radius of the wave generated by a drop of the fuel that fell into 
the pond.  Using the data

(a) Compute the rate at which the radius of the drop was changing at         seconds. 
(b) Estimate the rate at which the area of the contaminant was spreading across the 

pond at         seconds.

Time (s) 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Radius (m) 0 0.236 0.667 1.225 1.886 2.635 3.464 4.365 5.333

Use the third order polynomial interpolant for radius and area calculations. 

Table 2 Radius as a function of time.

2=t

2=t
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( ) 3
3

2
210 tatataatR +++=

( ) 667.0,0.1 == oo tRt

(a)     For the third order polynomial (also called cubic interpolation), 
we choose the radius given by 

Since we want to find the radius at         , and we are using a third order polynomial, 
we need to choose the four points closest to          and that also bracket           to 
evaluate it. 

The four points are

(Note: Choosing                                                       is equally valid.)

( ) 225.1,5.1 11 == tRt
( ) 886.1,0.2 22 == tRt

( ) 635.2,5.2 33 == tRt

Solution

2=t
2=t 2=t

.5.2 and ,0.2 ,5.1 ,0.1 3210 ==== tttt
0.3 and ,5.2 ,0.2 ,5.1 3210 ==== tttt
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Writing the four equations in matrix form, we have
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Solving the above four equations gives

0.0800000 −=a
0.471001 =a
0.295992 =a
0.0200003 −=a

( ) 3
3

2
210 tatataatR +++=

5.21,020000.029599.047100.0080000.0 32 ≤≤−++−= tttt

Hence
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Figure 2 Graph of radius vs. time.
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Example 2-Direct Fit Polynomials cont.

( ) 5.21,020000.029599.047100.0080000.0 32 ≤≤−++−= tttttR

( ) ( )tR
dt
dtR =  '

( )32 020000.029599.047100.0080000.0         ttt
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d
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The derivative of radius at t=2 is given by



http://numericalmethods.eng.usf.edu16

Example 2-Direct Fit Polynomials cont.

Time 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Area 0 0.17497 1.3977 4.7144 11.175 21.813 37.697 59.857 89.350

2RArea π=

( ) 3
3

2
210 tatataatA +++=

(b)

For the third order polynomial (also called cubic interpolation), we choose the
area given by  

Since we want to find the area at        , and we are using a third order polynomial, we 
need to choose the four points closest to          and that also bracket         to evaluate it.

The four points are

(Note: Choosing                                                    is equally valid.)

( ) 3977.1,0.1 == oo tAt
( ) 7144.4,5.1 11 == tAt
( ) 175.11,0.2 22 == tAt
( ) 813.21,5.2 33 == tAt

( )2m A
( )s t

2=t
2=t 2=t

 .5.2 and ,0.2 ,5.1 ,0.1 3210 ==== tttt
0.3 and ,5.2 ,0.2 ,5.1 3210 ==== tttt
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Writing the four equations in matrix form, we have
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0.0579000 =a
0.120751 −=a

0.0814682 =a
1.37903 =a

( ) 3
3

2
210 tatataatA +++=

5.21,3790.1081468.012075.0057900.0 32 ≤≤++−= tttt

Solving the above four equations gives

Hence
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Figure 3 Graph of area vs. time.
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( ) 5.21,3790.1081468.012075.0057900.0 32 ≤≤++−= tttttA
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The derivative of radius at t=2 is given by



http://numericalmethods.eng.usf.edu21

Lagrange Polynomial
( ) ( )nn yxyx ,,,, 11  ( )thn 1−In this method, given , one can fit a order Lagrangian polynomial
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Then to find the first derivative, one can differentiate ( )xfn

for other derivatives.

For example, the second order Lagrange polynomial passing through 

( ) ( ) ( )221100 ,,,,, yxyxyx is 
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Differentiating equation (2) gives

once, and so on

Lagrange Polynomial Cont.
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Differentiating again would give the second derivative as

Lagrange Polynomial Cont.
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Example 3
A new fuel for recreational boats being developed at the local university was tested at an 
are pond by a team of engineers. The interest is to document the environmental impact of 
the fuel – how quickly does the slick spread?  Table 3 shows the video camera record of 
the radius of the wave generated by a drop of the fuel that fell into the pond.  Using the 
data

(a)Compute the rate at which the radius of the drop was changing at           .
(b)Estimate the rate at which the area of the contaminant was spreading across 
the pond at          .

Time 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Radius 0 0.236 0.667 1.225 1.886 2.635 3.464 4.365 5.333

Use second order Lagrangian polynomial interpolation to solve the problem.

Table 3 Radius as a function of time.

2=t

2=t

( )s  t

( )m  R



Since we want to find the radius at         , and we are using a second order Lagrangian 
polynomial, we need to choose the three points closest to          that also bracket          to 
evaluate it. 
The three points are

Differentiating the above equation gives 
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)()()()( 2
12

1

02

0
1

21

2

01

0
0

20

2

10

1 tR
tt
tt

tt
tt

tR
tt
tt

tt
tt

tR
tt
tt

tt
tttR 








−
−









−
−

+







−
−









−
−

+







−
−









−
−

=

( ) ( )
( )( ) ( ) ( )

( )( ) ( ) ( )
( )( ) ( )2

1202

10
1

2101

20
0

2010

21' 222 tR
tttt

ttttR
tttt

ttttR
tttt

ttttR
−−

+−
+

−−
+−

+
−−

+−
=

( ) ( ) ( )
( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )
( )( ) ( )2.635

0.25.25.15.2
0.25.1221.886

5.20.25.10.2
5.25.1221.225

5.25.10.25.1
5.20.2222'

−−
+−

+
−−

+−
+

−−
+−

=R

Solution:
(a) For second order Lagrangian polynomial interpolation, we choose the radius given by

m/s  4100.1=

. 5.2 and , 0.2 , 5.1 210 === ttt

Hence,

2=t
2=t 2=t
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Example 3 Cont.

Time 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Area 0 0.17497 1.3977 4.7144 11.175 21.813 37.697 59.857 89.350

2RArea π=
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(b)

For second order Lagrangian polynomial interpolation, we choose the area given by 

( )s t
( )m A
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( ) ( ) ( )
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Since we want to find the area at        , and we are using a second order 
Lagrangian polynomial, we need to choose the three points closest to     
that also brackets        to evaluate it. 
The three points are                     

Differentiating the above equation gives 
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Additional Resources
For all resources on this topic such as digital audiovisual 
lectures, primers, textbook chapters, multiple-choice 
tests, worksheets in MATLAB, MATHEMATICA, MathCad 
and MAPLE, blogs, related physical problems, please 
visit

http://numericalmethods.eng.usf.edu/topics/discrete_02
dif.html

http://numericalmethods.eng.usf.edu/topics/discrete_02dif.html�
http://numericalmethods.eng.usf.edu/topics/discrete_02dif.html�


THE END
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