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Figure 1 Graphical Representation of forward difference approximation of first derivative.



Example 1

A new fuel for recreational boats being developed at the local university
was tested at an area pond by a team of engineers. The interest iIs to
document the environmental impact of the fuel — how quickly does the
slick spread? Table 1 shows the video camera record of the radius of the
wave generated by a drop of the fuel that fell into the pond.

Using the data

a)Compute the rate at which the radius of the drop was changing at
t =2 seconds.

b)Estimate the rate at which the area of the contaminant was spreading
across the pond at t=2 seconds.



Example 1 Cont.

Table 1 Radius as a function of time.

Time t (S)

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Radius R (m)

0

0.236

0.667

1.225

1.886

2.635

3.464

4.365

5.333

Use Forward Divided Difference approximation of the first derivative to
solve the above problem. Use a time step of 0.5 sec.




Example 1 Cont.

Solution
. R(t.,,)— Rt
@ R)= ( 1)At 4

t =2

ti+1 = 25

At =t , — T
=25-2
= 0.5

R(2)~ R(2.5)-R(2)

0.5

2.635-1.886
~ 05

~1.498 m/s



Example 1 Cont.

(b) Area = #R?

Time t(s) | 0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0

Area A(m*) | 0 | 0.17497 1.3977 | 4.7144 | 11.175 | 21.813 | 37.697 | 59.857 | 89.350

D
21.813-11.175

0.5
~ 21.276m?/s




Direct Fit Polynomials

In this method, given 'N+1 data points (Xo, Yo ) (Xl, yl)v (Xga yz) ----- (Xn, Ya
one can fita n™ order polynomial given by

P(x)=a,+aXx+.....+a _x""+ax"

n

To find the first derivative,

P'(x)= dp, (x)

n-2 n-1
! o 2a,X +......+(n=1)a_,x"? +na,x

Similarly other derivatives can be found.



Example 2-Direct Fit Polynomials

A new fuel for recreational boats being developed at the local university was tested at
an area pond by a team of engineers. The interest is to document the environmental
impact of the fuel — how quickly does the slick spread? Table 2 shows the video

camera record of the radius of the wave generated by a drop of the fuel that fell into
the pond. Using the data

(a) Compute the rate at which the radius of the drop was changing at t = 2 seconds.

(b) Estimate the rate at which the area of the contaminant was spreading across the
pond at t =2 seconds.

Table 2 Radius as a function of time.
Time (s) 01(0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Radius (m) | 0 {0.236 {0.667 |1.225 |1.886 (2.635 |3.464 |4.365 [5.333

Use the third order polynomial interpolant for radius and area calculations.
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Example 2-Direct Fit Polynomials cont.

Solution
(a)  For the third order polynomial (also called cubic interpolation),
we choose the radius given by

R(t)=a, +a,t +a,t® +a,t®
Since we want to find the radius at t = 2, and we are using a third order polynomial,

we need to choose the four points closest to t = 2 and that also brackett =2 to
evaluate it.

The four points are t, =1.0,t, =1.5,t, =2.0,and t, = 2.5.
(Note: Choosing t, =1.5,t, =2.0,t, =2.5,and t, = 3.0 is equally valid.)
t, =10, R(t,)=0.667

t, =1.5, R(t,)=1.225
t,=2.0, R(t,)=1.886
t,=25, R(t,)=2.635



Example 2-Direct Fit Polynomials cont.

such that
R(L.0)=0.667 = a, +a,(1.0)+a,(1.0)" +a,(1.0)

R(L5)=1.225=a, +a,(1.5)+a,(L5)" +a,(L5)
R(2.0)=1.886 = a, +a,(2.0)+a,(2.0)" +a,(2.0)’
R(2.5)=2.635=a, +a,(2.5)+a,(25) +a,(25)

Writing the four equations in matrix form, we have

1 1 1 1 Ta,| [0.667
1 15 225 3375 |a, | [1.225
1 2 4 8 |a, | |1886
1 25 625 15625]a,| |2.635)
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Example 2-Direct Fit Polynomials cont.

Solving the above four equations gives

a, =—0.080000
a, = 0.47100
a, = 0.29599

a, =—0.020000

Hence
R(t)=a, +a,t +a,t” +a,t*

= —0.080000+0.47100t +0.29599t* —0.020000t°, 1<t<25
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Example 2-Direct Fit Polynomials cont.

Fadiusvs. Time

% 15 ; 25
Time (s)
Figure 2 Graph of radius vs. time.



15

Example 2-Direct Fit Polynomials cont.

The derivative of radius at t=2 is given by

d

R(Z) = a R(t)‘t:Z
Given that
R(t) — —0.080000 + 0.47100t + 0.29599t2 —O.OZOOOOtS, 1<t<25
R () =L R(t)

ot

~ %(— 0.080000 -+ 0.47100t + 0.29599t> — 0.020000t* )

= 0.47100 + 0.59180t — 0.060000t*, 1<t<25

R'(2) = 0.47100 + 0.59180(2) - 0.060000(2)*
=1.415 m/s



Example 2-Direct Fit Polynomials cont.

(b) Area = 7R °?

Time  t(s) 0 |05 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Area  A(m?) | 0 [0.17497 [1.3977 |4.7144 |11.175 [21.813 [37.697 [59.857 |89.350

For the third order polynomial (also called cubic interpolation), we choose the
area given by Alt)=a, +at+a,t? +a,t’

Since we want to find the area at{ = 2, and we are using a third order polynomial, we
need to choose the four points closest to t=2 and that also bracket ! = 2 to evaluate it.

The four points are t, =1.0,t, =1.5,t, =2.0,and t, = 2.5.
(Note: Choosing th =1.5,t,=2.0,t, =2.5,andt, =3.0 js equally valid.)
t. =1.0, Alt,)=1.3977
t, =15, Alt,)=4.7144
t, =20, Alt,)=11.175
t,=2.5 A(t,)=21.813
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Example 2-fit Direct Ploynomials
cont.

such that
A(L.0)=1.3977 = a, +a,(1.0)+a,(1.0)° +a,(L.0)
A(L5)=4.7144=a, +a,(1.5)+a,(L.5) +a,(1.5)
A(2.0)=11.175=a, +a,(2.0)+a,(2.0) +a,(2.0)
A(2.5)=21.813=a, +2,(2.5)+2,(2.5) +a,(2.5)

Writing the four equations in matrix form, we have

1 1 1 1 Ta] [13977
1 15 225 3375 |a | |47144
1 2 4 8 |a| |11175
1 25 625 15625 a,| |21.813]



Example 2- Direct Fit polynomials
cont.

Solving the above four equations gives
a, =0.057900
a, =—0.12075
a, =0.081468

a, =1.3790

Hence
Alt)=a, +at+a,t” +a,t’
=0.057900—-0.12075t + 0.081468t* +1.3790t°>, 1<t<25
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Example 2-Direct Fit Polynomials cont.

Areavws. Time

b5 i 15 7 25 3
Time (5)
Figure 3 Graph of area vs. time.
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Example 2- Direct Fit Polynomial cont

The derivative of radius at t=2 is given by

CEQ),,

A'(2)=a

Given that
A(t)=0.057900 —0.12075t + 0.081468t* +1.3790t°, 1<t<2.5
. d
A(t) =—A(t
(©) =< A)

- 9 (2 0.057900 - 0.12075t + 0.081468t* +1.3790t" )

dt
= -0.12075+0.16294t + 4.1371t*, 1<t<25

A'(2)=-0.12075+0.16294(2) + 4.1371(2)?

—16.754 m?/s
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Lagrange Polynomial

In this method, given (x, ¥).-..(x,.¥»), one can fita (1-1" order Lagrangian polynomial
given by

£,00 = 2L 6O F (%)

where "n "in f (X) stands for the n™ order polynomial that approximates the function

y=f(x) givenat (n+1) data points as (Xo, Yo ), Yo ) (o0 Vos ) (%, Y0 ), and

N X —X.

Li(X):I |—J
i=0 X = X;
j#i

L. (x) aweighting function that includes a product of (n—1) terms with terms of

j — | omitted.



22

Lagrange Polynomial Cont.

Then to find the first derivative, one can differentiate f,(X) once, and so on

for other derivatives.

For example, the second order Lagrange polynomial passing through

(Xo’ Yo )v (X1’ yl)' (Xz ’ Y2) IS

fz(x): ((X_Xl)(X_XZ) f(xo)+ (X_Xo)(x_xz) f(xl)+((X_XO)(X_X1) f(Xz)

Xo — Xl)(XO - Xz) (Xl — X )(Xl - Xz)

Differentiating equation (2) gives
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Lagrange Polynomial Cont.

2X— (X, +X,)

Xo — Xl)(XO - Xz)

e 2X— (X, + X, ) -~ 2X — (X, +%,) .
f(O) (Xl_xo)(xl_xz)f(l) (Xz_xo)(xz_xl)f(Z)

le(X) = (

Differentiating again would give the second derivative as

f2"(x) = f (Xo)+ (

2
(% —% )% — %) f(x)+ ( £(x,)

Xy, — Xo)(xz o Xl)



Example 3

A new fuel for recreational boats being developed at the local university was tested at an
are pond by a team of engineers. The interest is to document the environmental impact of
the fuel — how quickly does the slick spread? Table 3 shows the video camera record of

the radius of the wave generated by a drop of the fuel that fell into the pond. Using the
data

(a)Compute the rate at which the radius of the drop was changing at t=2.

(b)Estimate the rate at which the area of the contaminant was spreading across
the pondatt = 2.

Table 3 Radius as a function of time.
Time t (S) |olos |10 |15 |20 |25 |30 |35 4.0
Radius R (M)|0 {0236 |0667 [1.225 |1.886 |2.635 |3464 |4.365 |5.333

Use second order Lagrangian polynomial interpolation to solve the problem.
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R (2)= ( 2(2)-(2.0+2.5)

Example 3 Cont.

Solution:
(a) For second order Lagrangian polynomial interpolation, we choose the radius given by

t-t, | t-t, t-t, | t-t, t-t, \ t-t,
R(t) ) (to -1 ][to -1 jR(tO) +[t1 -1 j[h -1 jR(tl) +[t2 -1 j[tz _tljR(tz)

Since we want to find the radius at t=2? , and we are using a second order Lagrangian
polynomial, we need to choose the three points closest to t=2 that also bracket t=2 to

evaluate it.
The three points are t, =1.9, 1, = 2.0,andt, =2.5.

Differentiating thE: above)equation gives ( ) ( )
: 2t —(t, +t 2t —(t, +t 2t —(t, +t
R'(t)= L~ 2 _R(t,)+ 0~ 21 _R(t,)+ 0~ 17 _R(t,)
(to o t1 )(to o t2 ) ° (tl o to )(tl T tz ) " (tz o to )(tz _ tl) i

Hence,

(1.225)+ 2(2)-(15+2.5) (1.886)+ 2(2)-(1.5+2.0)
15-20)L5-25)"  (20-15)2.0-25) (25-15)25-2.0

=1.4100 m/s

)(2.635)



Example 3 Cont.

() Area = 7R’
Time t(s) | 0]05 10 |15 |20 |25 3.0 [35 |40
Area A(M) | 00.17497 |1.3977 |4.7144 |11.175 |21.813 |37.697 |59.857 |89.350

For second order Lagrangian polynomial interpolation, we choose the area given by

At) = [

t-t,

t-t,

fy

~t, ][to ~t,

t-1,
]A(tO)Jr(tl -1 I

t-t,
|

t-t, | t-t,
tz _to tz _tl

i
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A(2)

Example 3 Cont.

Since we want to find the area at t=2 , and we are using a second order
Lagrangian polynomial, we need to choose the three points closest tot =2
that also brackets t=2 to evaluate it.

The three points are {,=1.5, 1,=2.0, and t,=2.5.

Differentiating the above equation gives

2t—(t, +t,) 2t—(t, +1,) 20— (t, +1)

Al(t): (to _tl)(to _tz)A(tO) " (tl —'[0)('[1—’[2) (tl) +(’[2_'[0)(t2_t1)A(t2)
Hence
~ 2(2)-(2.0+25) 2(2)-(1.5+2.5) 2(2)-(1.5+2.0)
- (1.5—2.0)(1.5—2.5)( e (2.0-1.5)(2.0—2.5)(11'175) ’ (2.5-1.5)2.5-2.0) (21.813)

=17.099 m?/s



Additional Resources

For all resources on this topic such as digital audiovisual
lectures, primers, textbook chapters, multiple-choice
tests, worksheets in MATLAB, MATHEMATICA, MathCad
and MAPLE, blogs, related physical problems, please
visit

http://numericalmethods.eng.usf.edu/topics/discrete_02
dif.html



http://numericalmethods.eng.usf.edu/topics/discrete_02dif.html�
http://numericalmethods.eng.usf.edu/topics/discrete_02dif.html�

THE END

hittp://numericalmethods.eng.usf.edu
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