Chapter 02.02
Differentiation of Continuous Functions

After reading this chapter, you should be able to:

derive formulas for approximating the first derivative of a function,
derive formulas for approximating derivatives from Taylor series,
derive finite difference approximations for higher order derivatives, and
use the developed formulas in examples to find derivatives of a function.

P

The derivative of a function at x is defined as

()= lim L AY) = /()
£'(x)= lim ~

Ax—0

To be able to find a derivative numerically, one could make Ax finite to give,

(o S+ Ax)- f(x)
[x)= ~ :

Knowing the value of x at which you want to find the derivative of f (x), we choose a value

of Ax to find the value of f'(x). To estimate the value of f'(x), three such approximations
are suggested as follows.

Forward Difference Approximation of the First Derivative

From differential calculus, we know

£/(x)= tim S+ Ax)- f(x)
Ax—0 Ax
For a finite Ax,
7(x)~ S+ Ax) - f(x)
Ax
The above is the forward divided difference approximation of the first derivative. It is called
forward because you are taking a point ahead of x. To find the value of f’(x) at x = x,, we

may choose another point Ax ahead as x = x,,,. This gives

' ~f(xi+l)_f(xi)
7o) = L)1)
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— f(xi+l)_f(xi)
Xiyg — X
where
Ax = x,,, — X
A
S (x)

»
>

X X+ Ax X

Figure 1 Graphical representation of forward difference approximation of first derivative.

Example 1

The velocity of a rocket is given by
14x10°*
14x10* - 2100¢

where v is given in m/s and ¢ is given in seconds. At ¢t =16s,
a) use the forward difference approximation of the first derivative of v(t) to calculate the
acceleration. Use a step size of A =2s.

b) find the exact value of the acceleration of the rocket.
c) calculate the absolute relative true error for part (b).

V(t)=20001n{ }—9.8@ 0<7<30

Solution
~ V(ti+1)_v(ti)
@ aly)> =
t, =16
At=2
t, =t +At

=16+2
=18



Continuous Differentiation

a(16)~ v(18)-v(16)
2
14 x10*
-9.8(18
14x104—2100(18)} (18)
=453.02 m/s
14x10*
16)=20001 ~9.8(16
v19) n{14x104—2100(16)} 16)
=392.07 m/s

v(18) = 2000 1n[

Hence
a(16)~ v(18)-v(16)

~453.02-392.07

2
=30.474m/s’

(b) The exact value of a(16) can be calculated by differentiating

14x10* |
14x10* - 2100t

v(t)=2000 h{

as

alt) =L [v(o)]

dt
Knowing that
d 1 d|l 1
Bl || —Zand —| 2 |=——
dt[n(t)] t o a’t{t} t?

4 4
a(e) = 2000 14210° =21001d [ 14x10 o3
14x10 dt (14 x10* - 2100t

4 4
=2ooo(14>‘10 24100rj(_1 14 x10 (- 2100)- 9.8
14x10 (14x10* —2100¢)

_ —4040-29.4¢
 —200+3¢
(16)="= 4040-29.4(16)
~200+3(16)
=29.674m/s’
(c) The absolute relative true error is

|€t| _ ITrue Value — Approximate Value| <100

True Value |
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_129.674 -30.474
| 29674 |
=2.6967%

x100

Backward Difference Approximation of the First Derivative
We know

£'(x)= lim

Ax—0

S+ Ax)- £ (x)
Ax

For a finite Ax,
7(x)~ [+ Ax)- f(x)
Ax
If Ax is chosen as a negative number,
1)~ S+ Ax) - f(x)
Ax
_S)-fx-a)
Ax
This is a backward difference approximation as you are taking a point backward from x. To
find the value of f '(x) at x = x,, we may choose another point Ax behind as x = x, ;. This

gives ( ) ( )
' - f X )~ f Xic1
f (xi)~ Ax
_ )= fx)
where o
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ON

x—Ax X X
Figure 2 Graphical representation of backward difference approximation of first derivative.

Example 2

The velocity of a rocket is given by
14x10*
14x10* —2100¢
(a) Use the backward difference approximation of the first derivative of v(t) to calculate the
acceleration at # =16s. Use a step size of At =25s.
(b) Find the absolute relative true error for part (a).

v(t)=2000 1n[ } ~9.8,0<r<30

Solution
a(t)z V(ti)_v(ti—l)
At
t. =16
At =2
., =t —At
=16-2
=14
61(16)z V(16)—V(14)
2
I 14 x10* ]
16)=20001 —-9.8(16
16) " 14%10* ~2100(16) | 16)
=392.07m/s
I 14 x10* ]
14)=20001 -9.8(14
v14) n_14x104—2100(l4)_ (14)
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=334.24m/s

a(16)~ v(16)-v(14)

~392.07-334.24
- 2
=28.915m/s’
(b) The exact value of the acceleration at  =16s from Example 1 is
a(16)=29.674 m/s’

The absolute relative true error for the answer in part (a) is
29.674-28915| .
29674 |

=2.5584%

|€,|=|

Forward Difference Approximation from Taylor Series

Taylor’s theorem says that if you know the value of a function f(x) at a point x, and all its

derivatives at that point, provided the derivatives are continuous between x, and x,,,, then

Pl = 1) 700+ L0

Substituting for convenience Ax = x,,, — X,

Fli)= 7)o aes L0 ey

, f(xi+l)_f(xi) f”(xi)
S (xi): Ax N 21 (Ax)+

fx,)= f(xmi; S(x) +O(Ax)

The O(Ax) term shows that the error in the approximation is of the order of Ax .
Can you now derive from the Taylor series the formula for the backward divided difference
approximation of the first derivative?

As you can see, both forward and backward divided difference approximations of the
first derivative are accurate on the order of O(Ax) Can we get better approximations? Yes,
another method to approximate the first derivative is called the central difference
approximation of the first derivative.

From the Taylor series

Sn)= s )+ 1, )m%ff)(m)z +L ";ff“f)(Ax)3 . (1)
and ' .
Ple)= £ s e s L0 o Sy o

Subtracting Equation (2) from Equation (1)
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)= 151) = o oan)+ 220y .

' f(xi+l)_f(xi—l) fm(x,-) 2
f(xi): 2 Ax B (Ax) +
_ f(xi+l)_f(xi—l)+ 0(Ax)2

2Ax

hence showing that we have obtained a more accurate formula as the error is of the order of
2
O(Ax) .

fx) ]

»
»

—
x—Ax X X+ Ax X

Figure 3 Graphical representation of central difference approximation of first derivative.

Example 3

The velocity of a rocket is given by
14x10*
14x10* —2100¢

(a) Use the central difference approximation of the first derivative of v(¢) to calculate the

v(t)= 20001{ }—9.8@0 <1<30.

acceleration at 1 =16s. Use a step size of Ar=2s.
(b) Find the absolute relative true error for part (a).

Solution
a(l‘i ) ~ V(tm )_ V(ti—l )
2At
t. =16

1

At=2
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14x10° |
-9.8(18
|14 x10* —2100(18) | 18)

=453.02m/s

v(18) = 20001n

14x10° |
~9.8(14
|14 x10* —2100(14) | (14)

=334.24m/s

v(14)=20001n

0(16)% V(lg)—l/(l4)
_ 453.02 -334.24
4

=29.694 m/s’
(b) The exact value of the acceleration at =16 from Example 1 is

a(16)=29.674 m/s
The absolute relative true error for the answer in part (a) is
)= 29.674-29.694| |
| 29674 |

=0.069157%
The results from the three difference approximations are given in Table 1.

Table 1 Summary of a(16) using different difference approximations

Type of difference 0(16) | c |%
approximation (m/sz) !
Forward 30.475 | 2.6967
Backward 28.915 | 2.5584
Central 29.695 | 0.069157

Clearly, the central difference scheme is giving more accurate results because the
order of accuracy is proportional to the square of the step size. In real life, one would not



Continuous Differentiation

know the exact value of the derivative — so how would one know how accurately they have
found the value of the derivative? A simple way would be to start with a step size and keep
on halving the step size until the absolute relative approximate error is within a pre-specified
tolerance.

Take the example of finding v’(t) for

4
X101 g
14x10° ~2100¢

at t =16 using the backward difference scheme. Given in Table 2 are the values obtained
using the backward difference approximation method and the corresponding absolute relative
approximate errors.

v(t) = 2000 h{

Table 2 First derivative approximations and relative errors for different Ar values of
backward difference scheme.

At v/(¢) €,|%

2 28.915

1 29.289 1.2792
0.5 29.480 0.64787
0.25 29.577 0.32604
0.125 29.625 0.16355

From the above table, one can see that the absolute relative approximate error
decreases as the step size is reduced. At A¢ =0.125, the absolute relative approximate error
is 0.16355%, meaning that at least 2 significant digits are correct in the answer.

Finite Difference Approximation of Higher Derivatives

One can also use the Taylor series to approximate a higher order derivative. For example, to
approximate f ”(x) , the Taylor series is

Fle)= 1)+ 7 orr)s L e+ ) oy o
where ' .

X, =X +2Ax

)= 1) 5 Yo+ Lo+ Ly @
where

X, =x,—Ax

Subtracting 2 times Equation (4) from Equation (3) gives

f(xi+2 )_ 2f(xi+1 ) = _f(xi)+ f"(xi )(Ax)z + fm(xi )(Ax)3



f(xi+2 )_ 2f(’xi+1 )+ f(xi)
(Ax)’

f”(xi ) =

— £ "(ox, XAx)+ ...

f"(xi)z f(xi+2)_Zf(xi+1)+f(xi)+0(Ax)

(Axy
Example 4
The velocity of a rocket is given by
14x10*
14x10* —2100¢

v(t)= 20001{

}—9.8t,0£t£30
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)

Use the forward difference approximation of the second derivative of v(¢) to calculate the

jerk at t=16s. Use a step size of At=25s.
Solution

j(ti ) ~ V(ti+2 ) - 2’V(ti+1 )+ V(ti)

(ary
t, =16
At=2
L, =t +At
=16+2
=18
t., =t +2(At)
=16+2(2)
=20
j(16)~ v(20)- 2(v2()128) +v(16)

4
v(20) = 2000 h{ 14x10 } ~9.8(20)

14x10* —2100(20)

=517.35m/s
B 4
v(18)=20001n 1410
| 14x10* -2100(18) |
=453.02m/s

B 4
v(16)=20001n 1410

| 14x10* —2100(16) |
=392.07m/s

517.35-2(453.02)+392.07
4
=0.84515m/s’

j(16)=

_ ~9.8(18)

_ ~9.8(16)
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The exact value of j(16) can be calculated by differentiating

14x10* |
14 x 10" —2100¢

v(t) = 2000 h{

twice as

Knowing that
%[m(t)] _ ; and

iH __ 1
dt|t t?

4 4
a(t):ZOOO(MXlO 2100tjd[ 14 x10 j_%

14x10° dt | 14 x10* = 2100¢

4 4
_ 2000(14“0 241001} » 14 %10 |2100)- 93
1410 (14x 10" - 2100¢)

| —4040-29.4¢

—200+ 3¢
Similarly it can be shown that

Jle) =< 1al0)]
18000
(=200 +3¢)?

18000

(16)=

j16) [—200+3(16)]
=0.77909 m/s’

The absolute relative true error is
_10.77909 - 0.84515]|

le|= x100
| 077909 |
=8.4797%

The formula given by Equation (5) is a forward difference approximation of the second
derivative and has an error of the order of O(Ax) Can we get a formula that has a better

accuracy? Yes, we can derive the central difference approximation of the second derivative.
The Taylor series is
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)anp + 270 () ®

X, =X, +Ax

Pl )= ) e e E e ST g S g

(7

where
X, =x,—MAx
Adding Equations (6) and (7), gives

Pl )+ £l ) =27 )+ 77 Y + () A

12
" _ f(xi+1)_2f(xi)+f(xi—l) f””(xi XAX)Z
S (xi)_ (Ax)z - 12 Fo
_ f(xi+1 )_2f(xi)+ f(xi—l) 2
= (Ax)2 + O(Ax)
Example 5

The velocity of a rocket is given by
14x10*
14x10* - 2100z
(a) Use the central difference approximation of the second derivative of v(t) to calculate the

jerk at t =16s. Use a step size of Ar=2s.
Solution

v(t)= 20001n[ }—9.81, 0<¢<30,

alt,)~ v(t.,)-2v(t)+v(, )

(ary
1, =16
At=2
t,, =t +At
=16+2
=18
t,, =t —At
=16-2
~14

v(18)—2v(16)+v(14)
(2)
14 x10*
14 x10* —2100(1 8)} ~98018)

j(16)=

v(18) = 2000 h{
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=453.02m/s

[ 14x10t ]
16)= 20001 ~9.8(16
16) " 14x10° —2100(16), (16)

=392.07m/s

[ 14x10 ]
14) = 20001 ~9.5(14
v14) " 14x10* ~2100(14) | 14)

=334.24m/s
: v(18)—2v(16)+v(14)
16)~
]( ) (2)2
_453.02-2(392.07)+334.24
- 4
=0.77969 m/s’
The absolute relative true error is
)= 10.77908-0.77969| .
| 077908 |
=0.077992%
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