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Chapter 03.03

Bisection Method of Solving a Nonlinear Equation
After reading this chapter, you should be able to:

1. follow the algorithm of the bisection method of solving a nonlinear equation,
2. use the bisection method to solve examples of finding roots of a nonlinear equation, and

3. enumerate the advantages and disadvantages of the bisection method.

What is the bisection method and what is it based on?

One of the first numerical methods developed to find the root of a nonlinear equation 
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 was the bisection method (also called binary-search method).  The method is based on the following theorem. 

Theorem
An equation
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 (See Figure 1).    

Note that if 
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, there may or may not be any root between 
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, then there may be more than one root between 
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Bisection method

Since the method is based on finding the root between two points, the method falls under the category of bracketing methods.

Since the root is bracketed between two points, 
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	Figure 1   At least one root exists between the two points if the function is real, continuous, and changes sign.
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	Figure 2   If the function 
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	Figure 3   If the function 
[image: image29.wmf])

(

x

f

 does not change sign between two points, there may not be any roots for the equation 
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Figure 4   If the function 
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 changes sign between the two points, more than one root for the equation 
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Is the root now between 
[image: image34.wmf]l

x

 and 
[image: image35.wmf]m

x

 or between 
[image: image36.wmf]m

x

 and 
[image: image37.wmf]u

x

?  Well, one can find the sign of 
[image: image38.wmf])

(

)

(

m

x

f

x

f

l

, and if 
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.  So, you can see that you are literally halving the interval.  As one repeats this process, the width of the interval 
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 becomes smaller and smaller, and you can zero in to the root of the equation 
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.  The algorithm for the bisection method is given as follows.
Algorithm for the bisection method

The steps to apply the bisection method to find the root of the equation 
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1. Choose 
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2. Estimate the root, 
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3. Now check the following
a) If 
[image: image58.wmf]0

)

(

)

(

<

m

x

f

x

f

l

, then the root lies between 
[image: image59.wmf]l

x

 and 
[image: image60.wmf]m

x

; then 
[image: image61.wmf]l

l

x

x

=

 and 
[image: image62.wmf]m

u

x

x

=

.   

b) If 
[image: image63.wmf]0

)

(

)

(

>

m

x

f

x

f

l

, then the root lies between 
[image: image64.wmf]m

x

 and 
[image: image65.wmf]u

x

; then 
[image: image66.wmf]m

x

x

=

l

 and 
[image: image67.wmf]u

u

x

x

=

.

c) If 
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; then the root is 
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4. Find the new estimate of the root
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            Find the absolute relative approximate error as
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5. Compare the absolute relative approximate error 
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 with the pre-specified relative error tolerance 
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, then go to Step 3, else stop the algorithm.  Note one should also check whether the number of iterations is more than the maximum number of iterations allowed.  If so, one needs to terminate the algorithm and notify the user about it.
Example 1

You have a spherical storage tank containing oil. The tank has a diameter of 6 ft. You are asked to calculate the height 
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 to which a dipstick 8 ft long would be wet with oil when immersed in the tank when it contains 4 
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 of oil.
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	Figure 5 Spherical storage tank problem.


The equation that gives the height, 
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, of the liquid in the spherical tank for the given volume and radius is given by   
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Use the bisection method of finding roots of equations to find the height, 
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, to which the dipstick is wet with oil.  Conduct three iterations to estimate the root of the above equation.  

Find the absolute relative approximate error at the end of each iteration and the number of significant digits at least correct at the end of each iteration.

Solution

From the physics of the problem, the dipstick would be wet between 
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that is
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Let us assume
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Check if the function changes sign between 
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So there is at least one root between 
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 that is between 0 and 6.

Iteration 1

The estimate of the root is
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Hence the root is bracketed between 
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, that is, between 0 and 3. So, the lower and upper limits of the new bracket are
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At this point, the absolute relative approximate error 
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 cannot be calculated, as we do not have a previous approximation.

Iteration 2

The estimate of the root is
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Hence, the root is bracketed between 
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, that is, between 0 and 1.5.  So the lower and upper limits of the new bracket are
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The absolute relative approximate error 
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 at the end of Iteration 2 is
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None of the significant digits are at least correct in the estimated root 
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as the absolute relative approximate error is greater that 
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Iteration 3

The estimate of the root is
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Hence, the root is bracketed between 
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, that is, between 0 and 0.75.  So the lower and upper limits of the new bracket are
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The absolute relative approximate error 
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 at the end of Iteration 3 is
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Still none of the significant digits are at least correct in the estimated root of the equation as the absolute relative approximate error is greater than 
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The height of the liquid is estimated as 0.75 ft at the end of the third iteration. 

Seven more iterations were conducted and these iterations are shown in Table 1.

	Table 1 Root of 
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 as a function of the number of iterations for bisection method.

	Iteration
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At the end of the 
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Hence the number of significant digits at least correct is given by the largest value of 
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The number of significant digits at least correct in the estimated root 0.67383 is 2.

Advantages of bisection method

a) The bisection method is always convergent.  Since the method brackets the root, the method is guaranteed to converge.
b) As iterations are conducted, the interval gets halved.   So one can guarantee the error in the solution of the equation.
Drawbacks of bisection method

a) The convergence of the bisection method is slow as it is simply based on halving the interval.  
b) If one of the initial guesses is closer to the root, it will take larger number of iterations to reach the root.
c) If a function 
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      it will be unable to find the lower guess, 
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d) For functions 
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 and it reverses sign at the singularity, the bisection method may converge on the singularity (Figure 7).  An example includes
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However, the function is not continuous and the theorem that a root exists is also not applicable.
	
 A singularity in a function is defined as a point where the function becomes infinite.  For example, for a function such as 
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, the point of singularity is 
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	          Figure 6   The equation 
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	                  Figure 7   The equation 
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