
 
 
 
 
 
Chapter 07.06 
 
Integrating Discrete Functions 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. integrate discrete functions by several methods, 
2. derive the formula for trapezoidal rule with unequal segments, and 
3. solve examples of finding integrals of discrete functions. 

 
 
What is integration? 
Integration is the process of measuring the area under a function plotted on a graph.  Why 
would we want to integrate a function?  Among the most common examples are finding the 
velocity of a body from an acceleration function, and displacement of a body from a velocity 
function.  Throughout many engineering fields, there are (what sometimes seems like) 
countless applications for integral calculus.  You can read about a few of these applications 
in different engineering majors in Chapters 07.00A-07.00G.   
Sometimes, the function to be integrated is given at discrete data points, and the area under 
the curve is needed to be approximated. Here, we will discuss the integration of such discrete 
functions,  

( )∫=
b

a

dxxfI  

where  
  is called the integrand and is given at discrete value of )(xf x , 
  lower limit of integration =a
  upper limit of integration =b
 
  

07.06.1 



07.06.2                                                        Chapter 07.06 
 

 

                                  Figure 1  Integration of a function 
 

Integrating discrete functions 
Multiple methods of integrating discrete functions are shown below using an example. 
Example 1 
The upward velocity of a rocket is given as a function of time in Table 1. 
 
Table 1 Velocity as a function of time. 

(s)t  )m/s()(tv
0 0 
10 227.04 
15 362.78 
20 517.35 
22.5 602.97 
30 901.67 

 
 
Determine the distance,  covered by the rocket from ,s 11=t  to 16=t  using the velocity 
data provided and use any applicable numerical technique.  
 
Solution 

Method 1: Average Velocity Method 
The velocity of the rocket is not provided at 11=t  and ,16=t  so we will have to use an 
interval that includes [  to find the average velocity of the rocket within that range.  In 
this case, the interval [  will suffice. 

]
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16,11
20,10
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78.362)15( =v  
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Figure 1 Velocity vs. time data for the rocket example 

 
 
Using 
 ,tvs Δ=   
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Method 2: Trapezoidal Rule 
If we were finding the distance traveled between times in the data table, we would simply 
find the area of the trapezoids with the corner points given as the velocity and time data 
points.  For example 
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and applying the trapezoidal rule over each of the above integrals gives 

 )( dttv∫
16

)]16()15([
2

1516)]15()11([
2

1115 vvvv +
−

++
−

≈  
11

                          ))16(78.362(
2

)78.362( vv +
1516)11(

2
1115 −

+=  +
−

ow do we find  and    We use linear interpolation.  To find ,  H  )11(v )16(v ? )11(v
( ),10148.2704.227)( −+= ttv  1510 ≤≤ t   

 .)11(v ( )10111482704.227 −+=  
 

nd to find
                  m/s19.254=  
a  )16(v  

( ),15913.3078.362)( −+= ttv  2015 ≤≤ t   
 .0)16(v ( )1516913378.362 −+=  

         

 )( dttv

 m/s69.393=  
Then 

∫
16

))16(78.362(
2

1516)78.362)11((
2

1115 vv +
−

++
−

≈  
11

)69.39378.362(
2

1516)78.36219.254(
2

1115
+

−
++

−
=                

              m2.1612=  
Method 3: Polynomial interpolation to find the velocity profile 
Because we are finding the area under the curve from [ ],20,10  we must use three points, 

,10=t  ,15=t  and ,20=t  to fit a quadratic polynomial through the data.  Using polynomial 
interpolation, our resulting velocity function is (refer to notes on direct method of 

terpolation) 

Now, we simply take the integral of the quadratic within our limits, giving us 
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Method 4: Spline interpolation to find the velocity profile 
Fitting quadratic splines (refer to notes on spline method of interpolation) through the data 
results in the following

t     
 set of quadratics 

,704.22 100 ≤≤ t  )(tv =
  1510 ≤≤ t,88.88928.48888.0 2 ++= tt         
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The value of the integral would then simply be 
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Example 2 
What is the absolute relative true error for each of the four methods used in Example 1 if the 
data in Table 1 was actually obtained from the velocity profile of 
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 where v  is given in m t
Solution 

11=t and 16=t  is 
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Method 1 
The approximate value obta ed usin ing average velocity method was .  Hence, the 
absolute relative true error, 

m3.1845

t∈ , is 
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Method 2: 
The approximate value ob ed tain using the trapezoidal rule was .  Hence, the 
absolute relative true error, 

m2.1612

t∈ , is 



07.06.6                                                        Chapter 07.06 
 

%100
9.1604

2.16129.1604
×

−
=∈t  

       %451.0=
Method 3: 
The approximate value obtained using the direct polynomial was 1604.3 m.  Hence, the 
absolute relative true error, t∈ , is 
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Method 4: 
The approximate value obtained using the spline interpolation was 1595.9 m, hence, the 
absolute relative true error, t∈ , is 
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Table 2  Comparison of discrete function methods of numerical integration 

Method Approximate
Value t∈  

Average Velocity 1845.3 14.976%
Trapezoidal Rule 1612.2 0.451% 
Polynomial Interpolation 1604.3 0.037% 
Spline Interpolation 1595.9 0.564% 

 
 
Trapezoidal Rule for Discrete Functions with Unequal Segments 

For a general case of a function given at data pointsn ( )( )11, xfx , ( )( )22 , xfx , ( )( )33 , xfx , 
….., , where,  are in an ascending order, the approximate value of the 

integral is given by 
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This approach uses the trapezoidal rule in the intervals [ ]21, xx , [ ]32 , xx , ….., [ ] and 
then adds the obtained values. 

nn xx ,1−
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Example 3 
The upward velocity of a rocket is given as a function of time in Table 3. 
 
Table 3.   Velocity as a function of time. 

t v(t) 
s m/s 
0 0 
10 227.04 
15 362.78 
20 517.35 
22.5 602.97 
30 901.67 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                     
                       Figure 2 Velocity vs. time data for the rocket example 
 
Determine the distance,  covered by the rocket from ,s 0=t  to 30=t  using the velocity data 
provided and the trapezoidal rule for discrete data with unequal segments. 
 
Solution 

( ) ( ) ( ) ( ) ( ) ( )dttvdttvdttvdttvdttvdttv ∫∫∫∫∫∫ ++++=
30

5.22

5.22

20

20

15

15

10

10

0

30

0

 

 

              ( ) ( ) ( ) ( ) ( ) ( )
2

15101015
2

100010 vvvv +
−+

+
−=

  

         
                 ( ) ( ) ( ) ( ) ( ) ( )

2
5.2220205.22

2
20151520 vvvv +

−+
+

−+  



07.06.8                                                        Chapter 07.06 
 

                            ( ) ( ) ( )
2

305.225.2230 vv +
−+  

              ( ) ( )
2

78.36204.2275
2

04.227010 +
+

+
=  

                             ( ) ( )
2

97.60235.5175.2
2

35.51778.3625 +
+

+
+  

       ( )
2

67.90197.6025.7 +
+  

               4.56429.1399325.220055.14742.1135 ++++=  
                m11852=

        Can you find the value of ?     ( )∫
20

10

dttv

 
INTEGRATION  
Topic Integrating discrete functions 
Summary Textbook notes on integrating discrete functions 
Major All Majors of Engineering 
Authors Autar Kaw 
Last Revised November 14, 2008 
Web Site http://numericalmethods.eng.usf.edu 

 

http://numericalmethods.eng.usf.edu/

	Chapter 07.06
	Integrating Discrete Functions
	What is integration?
	Integrating discrete functions
	Example 1
	Solution
	Method 1: Average Velocity Method
	Method 2: Trapezoidal Rule
	Method 3: Polynomial interpolation to find the velocity profile
	Method 4: Spline interpolation to find the velocity profile

	Example 2
	Solution
	Method 1
	Method 2:
	Method 3:
	Method 4:

	Trapezoidal Rule for Discrete Functions with Unequal Segments
	Example 3

