Euler Method

Chemical Engineering Majors

Authors: Autar Kaw, Charlie Barker

http://numericalmethods.eng.usf.edu

Transforming Numerical Methods Education for STEM Undergraduates

Euler Method

Euler's Method

Euler's Method

Figure 2. General graphical interpretation of Euler's method

How to write Ordinary Differential Equation

How does one write a first order differential equation in the form of

 $\frac{dy}{dx} = f(x, y)$

Example

$$\frac{dy}{dx} + 2y = 1.3e^{-x}, y(0) = 5$$

is rewritten as

$$\frac{dy}{dx} = 1.3e^{-x} - 2y, \, y(0) = 5$$

In this case

$$f(x, y) = 1.3e^{-x} - 2y$$

Example

The concentration of salt, x in a home made soap maker is given as a function of time by

$$\frac{dx}{dt} = 37.5 - 3.5x$$

At the initial time, t = 0, the salt concentration in the tank is 50g/L. Using Euler's method and a step size of h = 1.5 min, what is the salt concentration after 3 minutes.

$$\frac{dx}{dt} = 37.5 - 3.5x$$
$$f(t, x) = 37.5 - 3.5x$$
$$x_{i+1} = x_i + f(t_i, x_i)h$$

Solution

For
$$i = 0$$
, $t_0 = 0$, $x_0 = 50$
Step 1: $x_1 = x_0 + f(t_0, x_0)h$
 $= 50 + f(0,50)1.5$
 $= 50 + (37.5 - 3.5(50))1.5$
 $= 50 + (-137.50)1.5$
 $= -156.25g / L$

 x_1 is the approximate concentration of salt at $t = t_1 = t_0 + h = 0 + 1.5 = 1.5$ min $x(1.5) \approx x_1 = -156.25 g / L$

Solution Cont

For i = 1, $t_1 = 1.5$, $x_1 = -156.25$

Step 2:
$$x_2 = x_1 + f(t_1, x_1)h$$

= -156.25 + $f(1.5, -156.25)1.5$
= -156.25 + $(37.5 - 3.5(-156.25))1.5$
= -156.25 + $(584.38)1.5$
= 720.31g / L

 x_2 is the approximate concentration of salt at $t = t_2 = t_1 + h = 15. + 1.5 = 3 \min$ $x(3) \approx x_2 = 720.31g / L$

Solution Cont

The exact solution of the ordinary differential equation is given by ()

$$x(t) = 10.714 + 39.286e^{-3.5x}$$

The solution to this nonlinear equation at t=3 minutes is

$$x(3) = 10.715 \, \text{g/L}$$

Comparison of Exact and Numerical Solutions

Figure 3. Comparing exact and Euler's method

Effect of step size

Table 1. Concentration of salt at 3 minutes as afunction of step size, h

h Step	x(3)	E_t	$ \in_t $ %
3	-362.50	$\begin{array}{r} 373.22 \\ -709.60 \\ -273.93 \\ -0.0024912 \\ 0.0010803 \end{array}$	3483.0
1.5	720.31		6622.2
0.75	284.65		2556.5
0.375	10.718		0.023249
0.1875	10.714		0.010082

Comparison with exact results

Figure 4. Comparison of Euler's method with exact solution for different step sizes

Effects of step size on Euler's Method

Figure 5. Effect of step size in Euler's method.

Errors in Euler's Method

It can be seen that Euler's method has large errors. This can be illustrated using Taylor series.

$$y_{i+1} = y_i + \frac{dy}{dx}\Big|_{x_i, y_i} (x_{i+1} - x_i) + \frac{1}{2!} \frac{d^2 y}{dx^2}\Big|_{x_i, y_i} (x_{i+1} - x_i)^2 + \frac{1}{3!} \frac{d^3 y}{dx^3}\Big|_{x_i, y_i} (x_{i+1} - x_i)^3 + \dots$$

$$y_{i+1} = y_i + f(x_i, y_i) (x_{i+1} - x_i) + \frac{1}{2!} f'(x_i, y_i) (x_{i+1} - x_i)^2 + \frac{1}{3!} f''(x_i, y_i) (x_{i+1} - x_i)^3 + \dots$$

As you can see the first two terms of the Taylor series

 $y_{i+1} = y_i + f(x_i, y_i)h$ are the Euler's method.

The true error in the approximation is given by

$$E_{t} = \frac{f'(x_{i}, y_{i})}{2!}h^{2} + \frac{f''(x_{i}, y_{i})}{3!}h^{3} + \dots \qquad E_{t} \propto h^{2}$$

Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

http://numericalmethods.eng.usf.edu/topics/euler_meth od.html

THE END