Chapter 05.06 Extrapolation is a Bad Idea

After reading this chapter, you should be able to:

1. understand why using extrapolation can be a bad idea.

Example

(Due to certain reasons, this student wishes to remain anonymous.) This takes place in Summer Session B – July 2001

Student: "Hey, Dr. Kaw! Look at this cool new cell phone I just got!"

Kaw: "That's nice. It better not ring in my class or it's mine."

Student: "What would you think about getting stock in this company?"

Kaw: "What company is that?"

Student: "WorldCom! They're the world's leading global data and internet company."

Kaw: "So?"

Student: "They've just closed the deal today to merge with Intermedia Communications,

based right here in Tampa!"

Kaw: "Yeah, and ...?"

Student: "The stock's booming! It's at \$14.11 per share and promised to go only one way—up! We'll be millionaires if we invest now!"

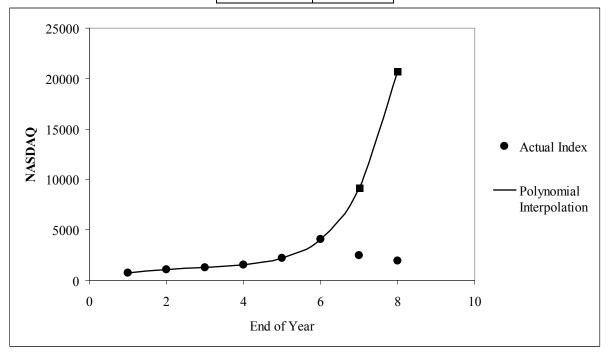
Kaw: "You might not want to assume their stock will keep rising ... besides, I'm skeptical of their success. I don't want you putting yourself in financial 'jeopardy!' over some silly extrapolation. Take a look at these NASDAQ composite numbers (Table 1)"

Student: "That's only up to two years ago ..."

Kaw: "That's right. Looking at this data, don't you think you should've invested back then?"

Student: "Well, didn't the composite drop after that?"

Kaw: "Right again, but look what you would've hoped for if you had depended on that trend continuing (Figure 1)."


Student: "So you're saying that ...?"

Kaw: "You should seldom depend on extrapolation as a source of approximation! Just take a look at how wrong you would have been (Table 2)."

05.06.2 Chapter 05.06

Table 1. End of year NASDAQ composite data

End of year ¹	NASDAQ
1	751.96
2	1052.13
3	1291.03
4	1570.35
5	2192.69
6	4069.31

Figure 1 Data from 1994 to 1999 extrapolated to yield results for 2000 and 2001 using polynomial extrapolation.

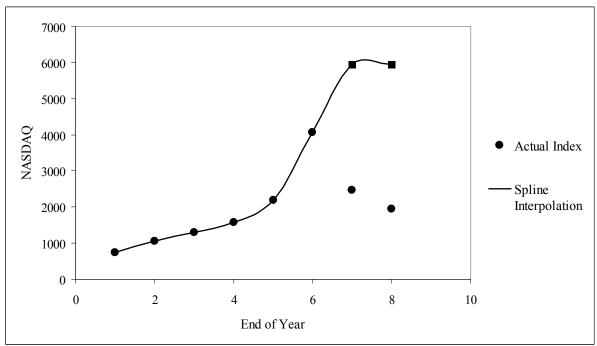

¹ Range of years actually between 1994 (Year 1) and 1999 (Year 9). Numbers start from 1 to avoid round-off errors and near singularity in matrix calculations.

Table 2 Absolute relative true error of polynomial interpolation	Table 2 Absolute	relative true error	of polynomia	al interpolation
---	------------------	---------------------	--------------	------------------

End of Year	Actual	Fifth order	Absolute relative
End of Tear	Actual	polynomial interpolation	true error
2000	2471	9128	269.47 %
2001	1950	20720	962.36 %

Student: "Now wait a sec! I wouldn't have been quite that wrong. What if I had used cubic splines instead of a fifth order interpolant?"

Kaw: "Let's find out."

Figure 2 Data from 1994 to 1999 extrapolated to yield results for 2000 and 2001 using cubic spline interpolation.

Table 3 Absolute relative true error of cubic spline interpolation

End of Year	A otual	Cubic spline	Absolute relative
End of Tear	Actual	interpolation	true error
2000	2471	5945.9	140.63 %
2001	1950	5947.4	204.99 %

Student: "There you go. That didn't take so long (Figure 2 and Table 3)."

Kaw: "Well, let's think about what this data means. If you had gone ahead and invested, thinking your projected yield would follow the spline, you would have only been 205% (Table 3) wrong, as opposed to being 962% (Table 2) wrong by following the polynomial. That's not so bad, is it?"

Student: "Okay, you've got a point. Maybe I'll hold off on being an investor and just use the cell phone."

05.06.4 Chapter 05.06

Kaw: "You've got a point, too—you're brighter than you look ... that is if you turn off the phone before coming to class."

* * * * *

<One year later ... July 2002>

Student: "Hey, Dr. Kaw! Whatcha got for me today?"

Student: <Grunt!> "That's a lot of paper! Boy, interpolation ... learned that a while ago."

Kaw: "You haven't forgotten my lesson to you about not extrapolating, have you?"

Student: "Of course not! Haven't you seen the news? WorldCom just closed down 93% from 83¢ on June 25 to 6¢ per share! They've had to recalculate their earnings, so your skepticism really must've spread. Did you have an "in" on what was going on?"

Kaw: "Oh, of course not. I'm just an ignorant numerical methods professor."

INTERPOLA	ΓΙΟΝ
Topic	Extrapolation is a bad idea
Summary	Textbook notes on errors that can occur when extrapolating data
Major	All majors of engineering
Authors	Autar Kaw
Last Revised	December 7, 2008
Web Site	http://numericalmethods.eng.usf.edu