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Chapter 06.07 
 
Multivariate Least Squares Fitting 
 
 Up until this point, we have considered single predictor variables in the spec-
ification of linear regression prediction equation.  However, in most practical 
engineering problems, the independent variables or factors that determine or affect 
the dependent or the response variable are not often single predictor variables.  If 
multiple independent variables affect the response variable, then the analysis calls for 
a model different from that used for the single predictor variable. In a situation where 
more than one independent factor (variable) affects the outcome of a process, a 
multiple regression model is used.  This is referred to as multiple linear regression 
model or multivariate least squares fitting.  Although flexibility is introduced into the 
regression analysis by the existence of multiple predictor variables, the complexity 
added by the use of multiple predictor variables makes this approach most suited for 
computer usage. A simple example problem for which multiple predictor variables 
may be required is the consideration of factors on which the total miles traveled per 
gallon of gas by a car depends. Some of the factors that determine gas usage by a car 
include its speed, its weight and the wind conditions etc. Thus, for its analysis, a 
multiple regression model is used which is often referred to as multiple linear 
regression model or multivariate least squares fitting. 
 Unlike the single-variable analysis, the interpretation of the output of a 
multivariate least squares fitting is made difficult by the involvement of several 
predictor variables. Hence, even if the data base is sound and correct model specified, 
it is not sufficient and correct to merely examine the magnitudes of the estimated 
coefficients in order to determine which predictor variables most affect the response. 
In the same vein, it is not sound to ignore the interactions of the predictor variables 
when considering the influence of any of the parameters. It is obvious from the fore 
going that modern day computer tools might have solved the computational aspect of 
the multivariate least squares method, but discerning the implications of the 
computational result remains a challenge. 

The multivariate least squares discussion will be very brief. Consider N  
observations on a response y , with m  regressors jx , ,,,3,2,1 mj …= , the multiple 

linear regression model is written as 

 ∑+=
=

m

j
ijji xy

1
0 ββ  Ni ,,2,1 …=     (1) 



 
MULTIVARIATE MODEL - REGRESSION                                                                        - 2 – 

 
 

W:\mws\gen\06reg\mws_gen_reg_spe_multivariate.doc 

In matrix form, we can arrange the data in the following form 
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where jβ̂  are the estimates of the regression coefficients, jβ  which can be ob- 

tained from the solution of the matrix equation: 
( ) YXXX ′′= −1ˆ̂α         (3) 

Equation 3 is obtained by setting up the sum of squares of the residuals and 
differentiating with respect to each of the unknown coefficients.  Similar to the single 
variable regression, the adequacy of the multiple least square regression model can be 
checked by computing the residuals and checking if they are normally distributed. 
1.1 Example 
For the model 22110 xxy βββ ++= , determine jβ  for the data in Table 1 

  
y  1x  2x  
144 18 52 
142 24 40 
124 12 40 
64 30 48 
96 30 32 
92 22 16 
Table 1:  Data for multiple least square regression 
 
1.1.1. Solution 
he single variable regression, setting up sum of squares of the residuals, 

 ( )∑ −−−=
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and differentiating with respect to each unknown coefficient arid equating each 
partial derivative to zero, 
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we obtain the following matrix expression: 
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i  y  1x  2x  2
1x  2

2x  21xx yx1  yx2  

1 144 18 52 324 2704 936 2592 7488 
2 142 24 40 576 1600 960 3408 5680 
3 124 12 40 144 1600 480 1488 4960 
4 64 30 48 900 2304 1440 1920 3072 
5 96 30 32 900 1024 960 2880 3072 
6 92 22 16 484 256 352 2024 1472 
∑  662 136 228 3328 9488 5128 14312 25744
 
Table 2: Computations for example problem 
 
Using the computed data in Table 2 in eqn. 8 we obtain 
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Equation 9 is a system of linear algebraic equations and can be solved by any of 
method suitable for solving simultaneous equations including Gauss elimination or 
matrix inversion methods, etc. Using matrix inversion method, the solution to eqn. 9 
gives 581.0,731.2,166.150 210 =−== βββ . As the number of predictor variables 
increase, solving eqn8 becomes more challenging, hence the use of computational 
software for the multivariate modeling. 
 


