Measuring Errors

Major: All Engineering Majors

Authors: Autar Kaw, Luke Snyder

http://numericalmethods.eng.usf.edu Numerical Methods for STEM undergraduates

Why measure errors?

1) To determine the accuracy of numerical results.

2) To develop stopping criteria for iterative algorithms.

True Error

 Defined as the difference between the true value in a calculation and the approximate value found using a numerical method etc.

True Error = True Value – Approximate Value

Example—True Error

The derivative, f'(x) of a function f(x) can be approximated by the equation, $f'(x) \approx \frac{f(x+h) - f(x)}{h}$ If $f(x) = 7e^{0.5x}$ and h = 0.3a) Find the approximate value of f'(2)b) True value of f'(2)

c) True error for part (a)

Solution: a) For x = 2 and h = 0.3 $f'(2) \approx \frac{f(2+0.3) - f(2)}{0.3}$ $=\frac{f(2.3) - f(2)}{0.3}$ $=\frac{7e^{0.5(2.3)}-7e^{0.5(2)}}{0.3}$ $=\frac{22.107-19.028}{0.3} = 10.263$

http://numericalmethods.eng.usf.edu

Solution:

b) The exact value of f'(2) can be found by using our knowledge of differential calculus.

 $f(x) = 7e^{0.5x}$ $f'(x) = 7 \times 0.5 \times e^{0.5x}$ $= 3.5e^{0.5x}$ So the true value of f'(2) is $f'(2) = 3.5e^{0.5(2)}$

= 9.5140

True error is calculated as E_t = True Value – Approximate Value = 9.5140 - 10.263 = -0.722

Relative True Error

Defined as the ratio between the true error, and the true value.

True Error Relative True Error (\in_t) =

True Value

Example—Relative True Error

Following from the previous example for true error, find the relative true error for $f(x) = 7e^{0.5x}$ at f'(2) with h = 0.3

From the previous example,

 $E_t = -0.722$

Relative True Error is defined as

 $\epsilon_{t} = \frac{\text{True Error}}{\text{True Value}}$ $= \frac{-0.722}{9.5140} = -0.075888$ as a percentage,

 $e_t = -0.075888 \times 100\% = -7.5888\%$

Approximate Error

- What can be done if true values are not known or are very difficult to obtain?
- Approximate error is defined as the difference between the present approximation and the previous approximation.

Approximate Error (E_a) = Present Approximation – Previous Approximation

Example—Approximate Error

For $f(x) = 7e^{0.5x}$ at x = 2 find the following,

a)
$$f'(2)$$
 using $h = 0.3$

b) f'(2) using h = 0.15

c) approximate error for the value of $f'^{(2)}$ for part b) Solution:

a) For
$$x = 2$$
 and $h = 0.3$
 $f'(x) \approx \frac{f(x+h) - f(x)}{h}$
 $f'(2) \approx \frac{f(2+0.3) - f(2)}{0.3}$

Solution: (cont.) $=\frac{f(2.3)-f(2)}{0.3}$ $=\frac{7e^{0.5(2.3)}-7e^{0.5(2)}}{0.3}$ $=\frac{22.107-19.028}{0.3} = 10.263$ b) For x = 2 and h = 0.15 $f'(2) \approx \frac{f(2+0.15) - f(2)}{0.15}$ $=\frac{f(2.15) - f(2)}{0.15}$

Solution: (cont.) = $\frac{7e^{0.5(2.15)} - 7e^{0.5(2)}}{0.15}$ = $\frac{20.50 - 19.028}{0.15}$ = 9.8800

c) So the approximate error, E_a is

 E_a = Present Approximation – Previous Approximation = 9.8800 – 10.263

= -0.38300

Relative Approximate Error

Defined as the ratio between the approximate error and the present approximation.

Relative Approximate Error (\in_a) =

Approximate Error

Present Approximation

Example—Relative Approximate Error

For $f(x) = 7e^{0.5x}$ at x = 2, find the relative approximate error using values from h = 0.3 and h = 0.15

Solution:

From Example 3, the approximate value of f'(2) = 10.263using h = 0.3 and f'(2) = 9.8800 using h = 0.15

$$E_a$$
 = Present Approximation – Previous Approximation

= 9.8800 - 10.263

= -0.38300

Solution: (cont.)

$$\epsilon_a = \frac{\text{Approximate Error}}{\text{Present Approximation}}$$
$$= \frac{-0.38300}{9.8800} = -0.038765$$

as a percentage,

 $\epsilon_a = -0.038765 \times 100 \% = -3.8765 \%$

Absolute relative approximate errors may also need to be calculated,

 $|\epsilon_a| = |-0.038765| = 0.038765$ or 3.8765%

How is Absolute Relative Error used as a stopping criterion?

If $|e_a| \le e_s$ where e_s is a pre-specified tolerance, then no further iterations are necessary and the process is stopped.

If at least *m* significant digits are required to be correct in the final answer, then $|\in_a| \le 0.5 \times 10^{2-m}$

Table of Values

For $f(x) = 7e^{0.5x}$ at x = 2 with varying step size, h

h	f'(2)	$ \epsilon_a $	т
0.3	10.263	N/A	0
0.15	9.8800	0.038765%	3
0.10	9.7558	0.012731%	3
0.01	9.5378	0.024953%	3
0.001	9.5164	0.002248%	4