
 
 
 
 
 
Chapter 01.05 
Floating Point Representation 
 
 
 
 
 
After reading this chapter, you should be able to: 

1. convert a base-10 number to a binary floating point representation, 
2. convert a binary floating point number to its equivalent base-10 number, 
3. understand the IEEE-754 specifications of a floating point representation in a 

typical computer, 
4. calculate the machine epsilon of a representation. 

 
Consider an old time cash register that would ring any purchase between 0 and 999.99 units 
of money.  Note that there are five (not six) working spaces in the cash register (the decimal 
number is shown just for clarification).  
Q: How will the smallest number 0 be represented? 
A: The number 0 will be represented as 

0 0 0 . 0 0
 
Q: How will the largest number 999.99 be represented? 
A: The number 999.99 will be represented as 

9 9 9 . 9 9
 
Q: Now look at any typical number between 0 and 999.99, such as 256.78.  How would it be 
represented? 
A: The number 256.78 will be represented as 

 2 5 6 . 7 8
 
Q: What is the smallest change between consecutive numbers? 
A: It is 0.01, like between the numbers 256.78 and 256.79.   
 
Q: What amount would one pay for an item, if it costs 256.789? 
A:  The amount one would pay would be rounded off to 256.79 or chopped to 256.78.  In 
either case, the maximum error in the payment would be less than 0.01.   
 
Q: What magnitude of relative errors would occur in a transaction? 
A: Relative error for representing small numbers is going to be high, while for large numbers 
the relative error is going to be small.   
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 For example, for 256.786, rounding it off to 256.79 accounts for a round-off error of 
.  The relative error in this case is 004.079.256786.256 −=−

100
786.256
004.0

×
−

=tε  

       . %001558.0−=
 For another number, 3.546, rounding it off to 3.55 accounts for the same round-off 
error of .  The relative error in this case is 004.055.3546.3 −=−

100
546.3
004.0

×
−

=tε  

      . %11280.0−=
 
Q: If I am interested in keeping relative errors of similar magnitude for the range of numbers, 
what alternatives do I have? 
A: To keep the relative error of similar order for all numbers, one may use a floating-point 
representation of the number.  For example, in floating-point representation, a number  
 256.78 is written as ,  2105678.2 ×+
  is written as  and  003678.0 ,10678.3 3−×+
  is written as .  789.256− 21056789.2 ×−
The general representation of a number in base-10 format is given as 

exponent10  mantissa sign ××  
or for a number y , 

emy 10××=σ  
Where 

1-or  1  number,   theofsign +=σ  
10   1 mantissa,  <≤= mm  

exponent integer   =e (also called ficand) 
Let us go back to the example where we have five spaces available for a number.  Let us also 
limit ourselves to positive numbers with positive exponents for this example.  If we use the 
same five spaces, then let us use four for the mantissa and the last one for the exponent.  So 
the smallest number that can be represented is 1 but the largest number would be .  
By using the floating-point representation, what we lose in accuracy, we gain in the range of 
numbers that can be represented.  For our example, the maximum number represented 
changed from  to .   

910999.9 ×

99.999 910999.9 ×
 What is the error in representing numbers in the scientific format?  Take the previous 
example of 256.78.  It would be represented as  and in the five spaces as 210568.2 ×
 

2 5 6 8 2
Another example, the number  would be represented as  and in five 
spaces as 

78.576329 510763.5 ×

5 7 6 3 5
 So, how much error is caused by such representation.  In representing 256.78, the 
round off error created is 020825678256 ... −=− , and the relative error is  
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%0077888.0100
78.256
02.0

−=×
−

=tε ,  

In representing , the round off error created is , 
and the relative error is  

78.576329 78.2910763.578.576329 5 =×−

%0051672.0100
78.576329

78.29
=×=tε .   

What you are seeing now is that although the errors are large for large numbers, but the 
relative errors are of the same order for both large and small numbers.  
 
Q: How does this floating-point format relate to binary format?   
A: A number y would be written as 

emy 2××=σ  
Where 

σ = sign of number (negative or positive – use 0 for positive and 1 for negative), 
m = mantissa, ( ) ( )22 101 <≤ m  , that is, ( ) ( )1010 21 <≤ m , and 
e = integer exponent. 

 
Example 1 

Represent ( in floating point binary format.  Assuming that the number is written to a 
hypothetical word that is 9 bits long where the first bit is used for the sign of the number, the 
second bit for the sign of the exponent,  the next four bits for the mantissa, and the next three 
bits for the exponent,  

)1075.54

 
Solution 

( ) ( ) 10)5(21011011.1)11.110110(75.54 2210 ×==  
The exponent 5 is equivalent in binary format as  

( ) ( )210 1015 =  
Hence  

( ) ( ) 2)101(21011011.175.54 210 ×=  
The sign of the number is positive, so the bit for the sign of the number will have zero in it. 

0=σ  
The sign of the exponent is positive.  So the bit for the sign of the exponent will have zero in 
it. 
The mantissa 

1011=m   
(There are only 4 places for the mantissa, and the leading 1 is not stored as it is always 
expected to be there), and 
the exponent 

101=e . 
we have the representation as 
 

0 0 1 0 1 1 1 0 1
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Example 2  
What number does the below given floating point format 

0 1 1 0 1 1 1 1 0
represent in base-10 format.  Assume a hypothetical 9-bit word, where the first bit is used for 
the sign of the number, second bit for the sign of the exponent, next four bits for the mantissa 
and next three for the exponent.  
Solution 
Given 

Bit Representation Part of Floating point number
0 Sign of number 
1 Sign of exponent 
1011 Magnitude of mantissa 
110 Magnitude of exponent 

 
The first bit is 0, so the number is positive.   
The second bit is 1, so the exponent is negative. 
The next four bits, 1011, are the magnitude of the mantissa, so  

( ) ( ) ( )1010
43210

2 6875.121212021211011.1 =×+×+×+×+×== −−−−m  
The last three bits, 110, are the magnitude of the exponent, so 

( ) ( ) ( )1010
012

2 6202121110 =×+×+×==e  
The number in binary format then is  

( ) ( ) 2110
2 21011.1 −×  

The number in base-10 format is  
=  626875.1 −×

 0.026367 =
 
Example 3 
A machine stores floating-point numbers in a hypothetical 10-bit binary word.  It employs 
the first bit for the sign of the number, the second one for the sign of the exponent, the next 
four for the exponent, and the last four for the magnitude of the mantissa. 

a) Find how 0.02832 will be represented in the floating-point 10-bit word. 
b) What is the decimal equivalent of the 10-bit word representation of part (a)? 

Solution 
a) For the number, we have the integer part as 0 and the fractional part as 0.02832 
Let us first find the binary equivalent of the integer part 

Integer part  ( ) ( )210 00 =
Now we find the binary equivalent of the fractional part 
 Fractional part:   202832. ×  
    205664.0 ×  
    211328.0 ×  
    222656.0 ×  
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    245312.0 ×  
    290624.0 ×  
    281248.1 ×  
    262496.1 ×  
    224992.1 ×  
    249984.0 ×  
    299968.0 ×  
    99936.1  
Hence 

( ) ( 210 10000011100.002832.0 ≅ )  
  ( ) 6

2 211001.1 −×=

  ( ) 6
2 21100.1 −×≅

The binary equivalent of exponent is found as follows 
 Quotient Remainder 
6/2 3 00 a=  
3/2 1 11 a=  
1/2 0 21 a=  

So 
( ) ( )210 1106 =  

So 
( ) ( ) ( )2110

210 21100.102832.0 −×=  

                   ( ) ( )20110
2 21100.1 −×=  

  
Part of Floating point number Bit Representation 
Sign of number is positive 0 
Sign of exponent is negative 1 
Magnitude of the exponent 0110 
Magnitude of mantissa 1100 

 
The ten-bit representation bit by bit is 

0 1 0 1 1 0 1 1 0 0
 
b) Converting the above floating point representation from part (a) to base 10 by following 
Example 2 gives 

( ) ( )20110
2 21100.1 −×  

( )43210 2020212121 −−−− ×+×+×+×+×=  ( )0123 202121202 ×+×+×+×−×   
( ) ( )106

10 275.1 −×=  
02734375.0=  

Q: How do you determine the accuracy of a floating-point representation of a number? 
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A: The machine epsilon,  is a measure of the accuracy of a floating point representation 
and is found by calculating the difference between 1 and the next number that can be 
represented.  For example, assume a 10-bit hypothetical computer where the first bit is used 
for the sign of the number, the second bit for the sign of the exponent, the next four bits for 
the exponent and the next four for the mantissa. 

mach∈

We represent 1 as 
0 0 0 0 0 0 0 0 0 0

and the next higher number that can be represented is  
0 0 0 0 0 0 0 0 0 1

The difference between the two numbers is  
( ) ( ) 22 )0000(

2
)0000(

2 20000.120001.1 ×−×  
( )20001.0=  

10
4 )21( −×=   

10)0625.0(= .   
The machine epsilon is  

0625.0=∈mach .   
The machine epsilon, is also simply calculated as two to the negative power of the 
number of bits used for mantissa.  As far as determining accuracy, machine epsilon,  is 
an upper bound of the magnitude of relative error that is created by the approximate 
representation of a number (See Example 4).   

mach∈

mach∈

 
Example 4 
A machine stores floating-point numbers in a hypothetical 10-bit binary word.  It employs 
the first bit for the sign of the number, the second one for the sign of the exponent, the next 
four for the exponent, and the last four for the magnitude of the mantissa.  Confirm that the 
magnitude of the relative true error that results from approximate representation of 0.02832 
in the 10-bit format (as found in previous example) is less than the machine epsilon.  
Solution 
From Example 2, the ten-bit representation of 0.02832 bit-by-bit is 

0 1 0 1 1 0 1 1 0 0
Again from Example 2, converting the above floating point representation to base-10 gives 

( ) ( )20110
2 21100.1 −×  

( ) ( )106
10 275.1 −×=  

( )1002734375.0=  
The absolute relative true error between the number 0.02832 and its approximate 
representation 0.02734375 is 

02832.0
02734375.002832.0 −

=tε  

       034472.0=
which is less than the machine epsilon for a computer that uses 4 bits for mantissa, that is, 
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0625.0
2 4

=
= −

machε
. 

Q: How are numbers actually represented in floating point in a real computer? 
A: In an actual typical computer, a real number is stored as per the IEEE-754 (Institute of 
Electrical and Electronics Engineers) floating-point arithmetic format.  To keep the 
discussion short and simple, let us point out the salient features of the single precision 
format. 

 A single precision number uses 32 bits.   
 A number y is represented as 

( ) eaaay 2.1 2321 ⋅×= σ  
where 

σ = sign of the number (positive or negative) 
23,..,1 1,or  0only  becan  mantissa,  theof entries == iai  

e =the exponent 
 Note the 1 before the radix point. 

 The first bit represents the sign of the number (0 for positive number and 1 for a 
negative number).   

 The next eight bits represent the exponent.  Note that there is no separate bit for the 
sign of the exponent.  The sign of the exponent is taken care of by normalizing by 
adding 127 to the actual exponent.  For example in the previous example, the 
exponent was 6.  It would be stored as the binary equivalent of 13312 = .  Why is 
127 and not some other number added to the actual exponent?  Because in eight bits 
the largest integer that can be represented is 

67 +

( ) 25511111111 2 = , and halfway of 255 
is 127.  This allows negative and positive exponents to be represented equally.  The 
normalized (also called biased) exponent has the range from 0 to 255, and hence the 
exponent e has the range of 128127 ≤≤− e .   

 If instead of using the biased exponent, let us suppose we still used eight bits for the 
exponent but used one bit for the sign of the exponent and seven bits for the exponent 
magnitude.  In seven bits, the largest integer that can be represented is 
( ) 1271111111 2 =  in which case the exponent e  range would have been smaller, that 
is, 127 .  By biasing the exponent, the unnecessary representation of a 
negative zero and positive zero exponent (which are the same) is also avoided.   

127 ≤≤− e

 Actually, the biased exponent range used in the IEEE-754 format is not 0 to 255, but 
1 to 254.  Hence, exponent e  has the range of 127126 ≤≤− e .  So what are 

127−=  and 128=e  used for?  If 128e =e  and all the mantissa entries are zeros, the 
number is ∞±  ( the sign of infinity is governed by the sign bit), if 128=e  and the 
mantissa entries are not zero, the number being represented is Not a Number (NaN).  
Because of the leading 1 in the floating point representation, the number zero cannot 
be represented exactly.  That is why the number zero (0) is represented by 127−=e  
and all the mantissa entries being zero.   

 The next twenty-three bits are used for the mantissa. 
 The largest number by magnitude that is represented by this format is 

  ( ) 1272322210 22121212121 ××+×++×+×+× −−−− 381040.3 ×=  
  The smallest number by magnitude that is represented, other than zero, is 
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  ( ) 1262322210 22020202021 −−−−− ××+×++×+×+× 381018.1 −×=  
 Since 23 bits are used for the mantissa, the machine epsilon, 

   . 
7

23

1019.1

2
−

−

×=

=∈mach

 
Q: How are numbers represented in floating point in double precision in a computer? 
A: In double precision IEEE-754 format, a real number is stored in 64 bits.   

 The first bit is used for the sign,  
 the next 11 bits are used for the exponent, and  
 the rest of the bits, that is 52, are used for mantissa.   

Can you find in double precision the  
 range of the biased exponent, 
 smallest number that can be represented,  
 largest number that can be represented, and 
 machine epsilon? 
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