LU Decomposition

Major: All Engineering Majors
Authors: Autar Kaw
http:// numericalmethods.eng.usf.edu
Transforming Numerical Methods Education for STEM Undergraduates

LU Decomposition

http://numericalmethods.eng.usf.edu

LU Decomposition

LU Decomposition is another method to solve a set of simultaneous linear equations

Which is better, Gauss Elimination or LU Decomposition?

To answer this, a closer look at LU decomposition is needed.

LU Decomposition Method

For most non-singular matrix [A] that one could conduct Naïve Gauss Elimination forward elimination steps, one can always write it as

$$
[A]=[L][U]
$$

where
[L] = lower triangular matrix
$[U]=$ upper triangular matrix

How does LU Decomposition work?

If solving a set of linear equations
If $[A]=[L][U]$ then
Multiply by
Which gives $\quad[L]^{-1}[L][U][X]=[L]^{-1}[C]$
Remember $[L]^{-1}[L]=[I]$ which leads to $\quad[I][U][X]=[L]^{-1}[C]$
Now, if $[I][U]=[U]$ then $\quad[U][X]=[L]^{-1}[C]$
Now, let $\quad[L]^{-1}[C]=[Z]$
Which ends with $\quad[L][Z]=[C]$ (1)
and $\quad[U][X]=[Z]$

LU Decomposition

 How can this be used?Given $[A][X]=[C]$

1. Decompose $[A]$ into $[L]$ and $[U]$
2. Solve $[L][Z]=[C]$ for $[Z]$
3. Solve $[U][X]=[Z]$ for $[X]$

When is LU Decomposition better than Gaussian Elimination?

To solve $[A][X]=[B]$

Table. Time taken by methods

Gaussian Elimination	LU Decomposition
$T\left(\frac{8 n^{3}}{3}+12 n^{2}+\frac{4 n}{3}\right)$	$T\left(\frac{8 n^{3}}{3}+12 n^{2}+\frac{4 n}{3}\right)$

where $\mathrm{T}=$ clock cycle time and $\mathrm{n}=$ size of the matrix

So both methods are equally efficient.

To find inverse of [A]

Time taken by Gaussian Elimination

$$
\begin{aligned}
& =n\left(\left.C T\right|_{F E}+\left.C T\right|_{B S}\right) \\
& =T\left(\frac{8 n^{4}}{3}+12 n^{3}+\frac{4 n^{2}}{3}\right)
\end{aligned}
$$

Time taken by LU Decomposition

$$
\begin{aligned}
& =\left.C T\right|_{L U}+n \times\left. C T\right|_{F S}+n \times\left. C T\right|_{B S} \\
& =T\left(\frac{32 n^{3}}{3}+12 n^{2}+\frac{20 n}{3}\right)
\end{aligned}
$$

Table 1 Comparing computational times of finding inverse of a matrix using LU decomposition and Gaussian elimination.

n	10	100	1000	10000
$\left.\mathrm{CT}\right\|_{\text {inverse GE }} /\left.\mathrm{CT}\right\|_{\text {inverse LU }}$	3.28	25.83	250.8	2501

Method: [A] Decompose to [L] and [U]

$$
[A]=[L][U]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\ell_{21} & 1 & 0 \\
\ell_{31} & \ell_{32} & 1
\end{array}\right]\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]
$$

$[U]$ is the same as the coefficient matrix at the end of the forward elimination step.
$[L]$ is obtained using the multipliers that were used in the forward elimination process

Finding the [U] matrix

Using the Forward Elimination Procedure of Gauss Elimination

$$
\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]
$$

Step 1: $\quad \frac{64}{25}=2.56 ; \quad \operatorname{Row} 2-\operatorname{Row} 1(2.56)=\left[\begin{array}{ccc}25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 144 & 12 & 1\end{array}\right]$

$$
\frac{144}{25}=5.76 ; \quad \operatorname{Row} 3-\operatorname{Row} 1(5.76)=\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & -16.8 & -4.76
\end{array}\right]
$$

Finding the [U] Matrix

Matrix after Step 1: $\left[\begin{array}{ccc}25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & -16.8 & -4.76\end{array}\right]$
Step 2: $\frac{-16.8}{-4.8}=3.5 ; \quad$ Row3-Row2(3.5) $=\left[\begin{array}{ccc}25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7\end{array}\right]$

$$
[U]=\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & 0 & 0.7
\end{array}\right]
$$

Finding the [L] matrix

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
\ell_{21} & 1 & 0 \\
\ell_{31} & \ell_{32} & 1
\end{array}\right]
$$

Using the multipliers used during the Forward Elimination Procedure

From the first step
of forward
elimination

64 \& 8 \& 1

144 \& 12 \& 1\end{array}\right] \quad\)| $\ell_{21}=\frac{a_{21}}{a_{11}}=\frac{64}{25}=2.56$ |
| :--- |
| $\ell_{31}=\frac{a_{31}}{a_{11}}=\frac{144}{25}=5.76$ |

Finding the [L] Matrix

Does [L][U] = [A]?

$$
[L][U]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2.56 & 1 & 0 \\
5.76 & 3.5 & 1
\end{array}\right]\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & 0 & 0.7
\end{array}\right]=?
$$

Using LU Decomposition to solve SLEs

Solve the following set of linear equations using LU Decomposition

$$
\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
106.8 \\
177.2 \\
279.2
\end{array}\right]
$$

Using the procedure for finding the [L] and [U] matrices

$$
[A]=[L \| U]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2.56 & 1 & 0 \\
5.76 & 3.5 & 1
\end{array}\right]\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & 0 & 0.7
\end{array}\right]
$$

Example

Set $[L][Z]=[C] \quad\left[\begin{array}{ccc}1 & 0 & 0 \\ 2.56 & 1 & 0 \\ 5.76 & 3.5 & 1\end{array}\right]\left[\begin{array}{l}z_{1} \\ z_{2} \\ z_{3}\end{array}\right]=\left[\begin{array}{l}106.8 \\ 177.2 \\ 279.2\end{array}\right]$

Solve for [Z]

$$
\begin{aligned}
& z_{1}=10 \\
& 2.56 z_{1}+z_{2}=177.2 \\
& 5.76 z_{1}+3.5 z_{2}+z_{3}=279.2
\end{aligned}
$$

Example

Complete the forward substitution to solve for [Z]

$$
\begin{aligned}
z_{1} & =106.8 \\
z_{2} & =177.2-2.56 z_{1} \\
& =177.2-2.56(106.8) \\
& =-96.2 \\
z_{3} & =279.2-5.76 z_{1}-3.5 z_{2} \\
& =279.2-5.76(106.8)-3.5(-96.21) \\
& =0.735
\end{aligned}
$$

Example

Set $[U][X]=[Z]$

$$
\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & 0 & 0.7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
106.8 \\
-96.21 \\
0.735
\end{array}\right]
$$

Solve for $[X]$
The 3 equations become

$$
\begin{aligned}
25 a_{1}+5 a_{2}+a_{3} & =106.8 \\
-4.8 a_{2}-1.56 a_{3} & =-96.21 \\
0.7 a_{3} & =0.735
\end{aligned}
$$

Example

From the $3^{\text {rd }}$ equation

$$
\begin{aligned}
0.7 a_{3} & =0.735 \\
a_{3} & =\frac{0.735}{0.7} \\
a_{3} & =1.050
\end{aligned}
$$

Substituting in a_{3} and using the second equation

$$
\begin{aligned}
& -4.8 a_{2}-1.56 a_{3}=-96.21 \\
& a_{2}=\frac{-96.21+1.56 a_{3}}{-4.8} \\
& a_{2}=\frac{-96.21+1.56(1.050)}{-4.8} \\
& a_{2}=19.70
\end{aligned}
$$

Example

Substituting in a_{3} and a_{2} using the first equation

$$
\begin{aligned}
& 25 a_{1}+5 a_{2}+a_{3}=106.8 \\
& a_{1}=\frac{106.8-5 a_{2}-a_{3}}{25} \\
&=\frac{106.8-5(19.70)-1.050}{25} \\
&=0.2900
\end{aligned}
$$

Hence the Solution Vector is:

$$
\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
0.2900 \\
19.70 \\
1.050
\end{array}\right]
$$

Finding the inverse of a square matrix

The inverse $[B]$ of a square matrix $[A]$ is defined as

$$
[A][B]=[I]=[B][A]
$$

Finding the inverse of a square matrix

How can LU Decomposition be used to find the inverse?
Assume the first column of $[B]$ to be $\left[\begin{array}{llll}b_{11} & b_{12} & \ldots & b_{n 1}\end{array}\right]^{T}$
Using this and the definition of matrix multiplication

First column of $[B]$

$$
[A]\left[\begin{array}{c}
b_{11} \\
b_{21} \\
\vdots \\
b_{n 1}
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Second column of $[B]$

$$
[A]\left[\begin{array}{c}
b_{12} \\
b_{22} \\
\vdots \\
b_{n 2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right]
$$

The remaining columns in $[B]$ can be found in the same manner

Example: Inverse of a Matrix

Find the inverse of a square matrix $[A]$

$$
[A]=\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]
$$

Using the decomposition procedure, the [L] and $[U]$ matrices are found to be

$$
[A]=[L][U]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2.56 & 1 & 0 \\
5.76 & 3.5 & 1
\end{array}\right]\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & 0 & 0.7
\end{array}\right]
$$

Example: Inverse of a Matrix

Solving for the each column of $[B]$ requires two steps

1) Solve $[L][Z]=[C]$ for $[Z]$
2) Solve $[U][X]=[Z]$ for $[X]$

$$
\text { Step 1: }[L][Z]=[C] \rightarrow\left[\begin{array}{ccc}
1 & 0 & 0 \\
2.56 & 1 & 0 \\
5.76 & 3.5 & 1
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

This generates the equations:

$$
\begin{aligned}
z_{1} & =1 \\
2.56 z_{1}+z_{2} & =0 \\
5.76 z_{1}+3.5 z_{2}+z_{3} & =0
\end{aligned}
$$

Example: Inverse of a Matrix

Solving for [Z]

$$
\begin{aligned}
z_{1} & =1 \\
z_{2} & =0-2.56 z_{1} \\
& =0-2.56(1) \\
& =-2.56 \\
z_{3} & =0-5.76 z_{1}-3.5 z_{2} \\
& =0-5.76(1)-3.5(-2.56) \\
& =3.2
\end{aligned}
$$

$$
[Z]=\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2.56 \\
3.2
\end{array}\right]
$$

Example: Inverse of a Matrix

Solving $[U][X]=[Z]$ for $[X] \quad\left[\begin{array}{ccc}25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7\end{array}\right]\left[\begin{array}{l}b_{11} \\ b_{21} \\ b_{31}\end{array}\right]=\left[\begin{array}{c}1 \\ -2.56 \\ 3.2\end{array}\right]$
$25 b_{11}+5 b_{21}+b_{31}=1$
$-4.8 b_{21}-1.56 b_{31}=-2.56$

$$
0.7 b_{31}=3.2
$$

Example: Inverse of a Matrix

Using Backward Substitution

$$
\begin{aligned}
b_{31} & =\frac{3.2}{0.7}=4.571 \\
b_{21} & =\frac{-2.56+1.560 b_{31}}{-4.8} \\
& =\frac{-2.56+1.560(4.571)}{-4.8}=-0.9524 \\
b_{11} & =\frac{1-5 b_{21}-b_{31}}{25} \\
& =\frac{1-5(-0.9524)-4.571}{25}=0.04762
\end{aligned}
$$

So the first column of the inverse of $[A]$ is:

$$
\left[\begin{array}{l}
b_{11} \\
b_{21} \\
b_{31}
\end{array}\right]=\left[\begin{array}{c}
0.04762 \\
-0.9524 \\
4.571
\end{array}\right]
$$

Example: Inverse of a Matrix

Repeating for the second and third columns of the inverse

$$
\begin{aligned}
& \text { Second Column } \\
& {\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]\left[\begin{array}{l}
b_{12} \\
b_{22} \\
b_{32}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{l}
b_{12} \\
b_{22} \\
b_{32}
\end{array}\right]=\left[\begin{array}{c}
-0.08333 \\
1.417 \\
-5.000
\end{array}\right]}
\end{aligned}
$$

Third Column

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]\left[\begin{array}{l}
b_{13} \\
b_{23} \\
b_{33}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{l}
b_{13} \\
b_{23} \\
b_{33}
\end{array}\right]=\left[\begin{array}{c}
0.03571 \\
-0.4643 \\
1.429
\end{array}\right]}
\end{aligned}
$$

Example: Inverse of a Matrix

The inverse of $[A]$ is

$$
[A]^{-1}=\left[\begin{array}{ccc}
0.04762 & -0.08333 & 0.03571 \\
-0.9524 & 1.417 & -0.4643 \\
4.571 & -5.000 & 1.429
\end{array}\right]
$$

To check your work do the following operation

$$
[A][A]^{-1}=[I]=[A]^{-1}[A]
$$

Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit
http://numericalmethods.eng.usf.edu/topics/lu_decomp osition.html

THE END

http:// numericalmethods.eng.usf.edu

