

Major: All Engineering Majors

Authors: Autar Kaw

http://numericalmethods.eng.usf.edu

Transforming Numerical Methods Education for STEM Undergraduates

http://numericalmethods.eng.usf.edu

An <u>iterative</u> method.

Basic Procedure:

- -Algebraically solve each linear equation for x_i
- -Assume an initial guess solution array
- -Solve for each x_i and repeat
- -Use absolute relative approximate error after each iteration to check if error is within a pre-specified tolerance.

Gauss-Seidel Method Why?

The Gauss-Seidel Method allows the user to control round-off error.

Elimination methods such as Gaussian Elimination and LU Decomposition are prone to prone to round-off error.

Also: If the physics of the problem are understood, a close initial guess can be made, decreasing the number of iterations needed.

Algorithm

A set of *n* equations and *n* unknowns:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + a_{n3}x_3 + \dots + a_{nn}x_n = b_n$$

non-zero

If: the diagonal elements are

Rewrite each equation solving for the corresponding unknown

ex:

First equation, solve for x₁

Second equation, solve for x₂

Algorithm

Rewriting each equation

$$x_{1} = \frac{c_{1} - a_{12}x_{2} - a_{13}x_{3} - \cdots - a_{1n}x_{n}}{a_{11}}$$
 From Equation 1
$$x_{2} = \frac{c_{2} - a_{21}x_{1} - a_{23}x_{3} - \cdots - a_{2n}x_{n}}{a_{22}}$$
 From equation 2
$$\vdots \qquad \vdots \qquad \vdots$$

$$x_{n-1} = \frac{c_{n-1} - a_{n-1,1}x_{1} - a_{n-1,2}x_{2} - \cdots - a_{n-1,n-2}x_{n-2} - a_{n-1,n}x_{n}}{a_{n-1,n-1}}$$
 From equation n-1
$$x_{n} = \frac{c_{n} - a_{n1}x_{1} - a_{n2}x_{2} - \cdots - a_{n,n-1}x_{n-1}}{a_{nn}}$$
 From equation n

Algorithm

General Form of each equation

$$x_1 = \frac{c_1 - \sum_{\substack{j=1\\j \neq 1}}^{n} a_{1j} x_j}{a_{11}}$$

$$c_2 - \sum_{\substack{j=1\\j\neq 2}}^n a_{2j} x_j$$

$$x_2 = \frac{a_{2j} x_j}{a_{22}}$$

$$c_{1} - \sum_{\substack{j=1\\j\neq 1}}^{n} a_{1j} x_{j}$$

$$c_{n-1} - \sum_{\substack{j=1\\j\neq n-1}}^{n} a_{n-1,j} x_{j}$$

$$x_{n-1} = \frac{a_{n-1,j} x_{j}}{a_{n-1,n-1}}$$

$$c_n - \sum_{\substack{j=1\\j\neq n}}^n a_{nj} x_j$$
$$x_n = \frac{a_{nn}}{a_{nn}}$$

Algorithm

General Form for any row 'i'

$$c_{i} - \sum_{\substack{j=1\\j\neq i}}^{n} a_{ij} x_{j}$$

$$x_{i} = \frac{1,2,...,n}{a_{ii}}$$

How or where can this equation be used?

Solve for the unknowns

Assume an initial guess for [X]

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix}$$

Use rewritten equations to solve for each value of x_i .

Important: Remember to use the most recent value of x_i . Which means to apply values calculated to the calculations remaining in the **current** iteration.

Calculate the Absolute Relative Approximate Error

$$\left| \in_a \right|_i = \left| \frac{x_i^{new} - x_i^{old}}{x_i^{new}} \right| \times 100$$

So when has the answer been found?

The iterations are stopped when the absolute relative approximate error is less than a prespecified tolerance for all unknowns.

The upward velocity of a rocket is given at three different times

Table 1 Velocity vs. Time data.

Time, <i>t</i> (s)	Velocity v (m/s)
5	106.8
8	177.2
12	279.2

The velocity data is approximated by a polynomial as:

$$v(t) = a_1 t^2 + a_2 t + a_3, 5 \le t \le 12.$$

Using a Matrix template of the form

$$\begin{bmatrix} t_1^2 & t_1 & 1 \\ t_2^2 & t_2 & 1 \\ t_3^2 & t_3 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

The system of equations becomes

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix}$$

Initial Guess: Assume an initial guess of
$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}$$

Rewriting each equation

$$a_1 = \frac{106.8 - 5a_2 - a_3}{25}$$

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix} \qquad a_2 = \frac{177.2 - 64a_1 - a_3}{8}$$

$$a_2 = \frac{177.2 - 64a_1 - a_3}{8}$$

$$a_3 = \frac{279.2 - 144a_1 - 12a_2}{1}$$

Applying the initial guess and solving for ai

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}$$

$$a_1 = \frac{106.8 - 5(2) - (5)}{25} = 3.6720$$

$$a_2 = \frac{177.2 - 64(3.6720) - (5)}{8} = -7.8510$$

$$a_3 = \frac{279.2 - 144(3.6720) - 12(-7.8510)}{1} = -155.36$$

When solving for a₂, how many of the initial guess values were used?

Finding the absolute relative approximate error

$$\left| \in_a \right|_i = \left| \frac{x_i^{new} - x_i^{old}}{x_i^{new}} \right| \times 100$$

$$\left| \in_{a} \right|_{1} = \left| \frac{3.6720 - 1.0000}{3.6720} \right| x 100 = 72.76\%$$

$$\left| \in_{a} \right|_{2} = \left| \frac{-7.8510 - 2.0000}{-7.8510} \right| x100 = 125.47\%$$

$$\left| \in_{a} \right|_{3} = \left| \frac{-155.36 - 5.0000}{-155.36} \right| x100 = 103.22\%$$

At the end of the first iteration

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 3.6720 \\ -7.8510 \\ -155.36 \end{bmatrix}$$

The maximum absolute relative approximate error is 125.47%

Using

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 3.6720 \\ -7.8510 \\ -155.36 \end{bmatrix}$$

from iteration #1

Iteration #2

The values of
$$a_i$$
 are found:
$$\begin{vmatrix} a_1 \\ a_2 \\ a_3 \end{vmatrix} = \begin{vmatrix} 3.6720 \\ -7.8510 \\ -155.36 \end{vmatrix}$$
the values of a_i are found:
$$a_1 = \frac{106.8 - 5(-7.8510) - 155.36}{25} = 12.056$$

$$a_2 = \frac{177.2 - 64(12.056) - 155.36}{8} = -54.882$$

$$a_3 = \frac{279.2 - 144(12.056) - 12(-54.882)}{1} = -798.34$$

Finding the absolute relative approximate error

$$\left| \in_{a} \right|_{1} = \left| \frac{12.056 - 3.6720}{12.056} \right| x 100 = 69.543\%$$

$$\left| \in_a \right|_2 = \left| \frac{-54.882 - (-7.8510)}{-54.882} \right| \times 100 = 85.695\%$$

$$\left| \in_{a} \right|_{3} = \left| \frac{-798.34 - (-155.36)}{-798.34} \right| x 100 = 80.540\%$$

At the end of the second iteration

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 12.056 \\ -54.882 \\ -798.54 \end{bmatrix}$$

The maximum absolute relative approximate error is 85.695%

Repeating more iterations, the following values are obtained

Iteration	<i>a</i> ₁	$\left \in_a \right _1 \%$	a_2	$\left \in_a \right _2 \%$	a_3	$\left \in_a \right _3 \%$
1	3.6720	72.767	-7.8510	125.47	-155.36	103.22
2	12.056	69.543	-54.882	85.695	-798.34	80.540
3	47.182	74.447	-255.51	78.521	-3448.9	76.852
4	193.33	75.595	-1093.4	76.632	-14440	76.116
5	800.53	75.850	-4577.2	76.112	-60072	75.963
6	3322.6	75.906	-19049	75.972	-249580	75.931

Notice – The relative errors are not decreasing at any significant rate

Also, the solution is not converging to the true solution of

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 0.29048 \\ 19.690 \\ 1.0857 \end{bmatrix}$$

Gauss-Seidel Method: Pitfall

What went wrong?

Even though done correctly, the answer is not converging to the correct answer

This example illustrates a pitfall of the Gauss-Siedel method: not all systems of equations will converge.

Is there a fix?

One class of system of equations always converges: One with a *diagonally* dominant coefficient matrix.

Diagonally dominant: [A] in [A] [X] = [C] is diagonally dominant if:

$$\left|a_{\mathrm{ii}}\right| \geq \sum_{\substack{j=1\\j\neq\mathrm{i}}}^n \left|a_{ij}\right| \quad \text{for all 'i'} \qquad \text{and } \left|a_{ii}\right| > \sum_{\substack{j=1\\j\neq i}}^n \left|a_{ij}\right| \text{ for at least one 'i'}$$

Gauss-Seidel Method: Pitfall

Diagonally dominant: The coefficient on the diagonal must be at least equal to the sum of the other coefficients in that row and at least one row with a diagonal coefficient greater than the sum of the other coefficients in that row.

Which coefficient matrix is diagonally dominant?

$$[A] = \begin{bmatrix} 2 & 5.81 & 34 \\ 45 & 43 & 1 \\ 123 & 16 & 1 \end{bmatrix} \qquad [B] = \begin{bmatrix} 124 & 34 & 56 \\ 23 & 53 & 5 \\ 96 & 34 & 129 \end{bmatrix}$$

$$[B] = \begin{bmatrix} 124 & 34 & 56 \\ 23 & 53 & 5 \\ 96 & 34 & 129 \end{bmatrix}$$

Most physical systems do result in simultaneous linear equations that have diagonally dominant coefficient matrices.

Given the system of equations

$$12x_1 + 3x_2 - 5x_3 = 1$$

$$x_1 + 5x_2 + 3x_3 = 28$$

$$3x_1 + 7x_2 + 13x_3 = 76$$

The coefficient matrix is:

$$[A] = \begin{bmatrix} 12 & 3 & -5 \\ 1 & 5 & 3 \\ 3 & 7 & 13 \end{bmatrix}$$

With an initial guess of

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Will the solution converge using the Gauss-Siedel method?

Checking if the coefficient matrix is diagonally dominant

$$[A] = \begin{bmatrix} 12 & 3 & -5 \\ 1 & 5 & 3 \\ 3 & 7 & 13 \end{bmatrix}$$

$$|a_{11}| = |12| = 12 \ge |a_{12}| + |a_{13}| = |3| + |-5| = 8$$

 $|a_{22}| = |5| = 5 \ge |a_{21}| + |a_{23}| = |1| + |3| = 4$
 $|a_{33}| = |13| = 13 \ge |a_{31}| + |a_{32}| = |3| + |7| = 10$

The inequalities are all true and at least one row is *strictly* greater than:

Therefore: The solution should converge using the Gauss-Siedel Method

Rewriting each equation

$$\begin{bmatrix} 12 & 3 & -5 \\ 1 & 5 & 3 \\ 3 & 7 & 13 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 \\ 76 \end{bmatrix}$$

$$x_1 = \frac{1 - 3x_2 + 5x_3}{12}$$

$$x_2 = \frac{28 - x_1 - 3x_3}{5}$$

$$x_3 = \frac{76 - 3x_1 - 7x_2}{13}$$

With an initial guess of

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$x_1 = \frac{1 - 3(0) + 5(1)}{12} = 0.50000$$

$$x_2 = \frac{28 - (0.5) - 3(1)}{5} = 4.9000$$

$$x_3 = \frac{76 - 3(0.50000) - 7(4.9000)}{13} = 3.0923$$

The absolute relative approximate error

$$\left| \in_a \right|_1 = \left| \frac{0.50000 - 1.0000}{0.50000} \right| \times 100 = 100.00\%$$

$$\left| \in_{a} \right|_{2} = \left| \frac{4.9000 - 0}{4.9000} \right| \times 100 = 100.00\%$$

$$\left| \in_{a} \right|_{3} = \left| \frac{3.0923 - 1.0000}{3.0923} \right| \times 100 = 67.662\%$$

The maximum absolute relative error after the first iteration is 100%

After Iteration #1

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.5000 \\ 4.9000 \\ 3.0923 \end{bmatrix}$$

Substituting the x values into the equations

$$x_1 = \frac{1 - 3(4.9000) + 5(3.0923)}{12} = 0.14679$$

$$x_2 = \frac{28 - (0.14679) - 3(3.0923)}{5} = 3.7153$$

$$x_3 = \frac{76 - 3(0.14679) - 7(4.900)}{13} = 3.8118$$

After Iteration #2

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.14679 \\ 3.7153 \\ 3.8118 \end{bmatrix}$$

Iteration #2 absolute relative approximate error

$$\left| \in_{a} \right|_{1} = \left| \frac{0.14679 - 0.50000}{0.14679} \right| \times 100 = 240.61\%$$

$$\left| \in_{a} \right|_{2} = \left| \frac{3.7153 - 4.9000}{3.7153} \right| \times 100 = 31.889\%$$

$$\left| \in_{a} \right|_{3} = \left| \frac{3.8118 - 3.0923}{3.8118} \right| \times 100 = 18.874\%$$

The maximum absolute relative error after the first iteration is 240.61%

This is much larger than the maximum absolute relative error obtained in iteration #1. Is this a problem?

Repeating more iterations, the following values are obtained

Iteration	a_1	$\left \in_a \right _1 \%$	a_2	$\left \in_a \right _2 \%$	a_3	$\left \in_a \right _3 \%$
1	0.50000	100.00	4.9000	100.00	3.0923	67.662
2	0.14679	240.61	3.7153	31.889	3.8118	18.876
3	0.74275	80.236	3.1644	17.408	3.9708	4.0042
4	0.94675	21.546	3.0281	4.4996	3.9971	0.65772
5	0.99177	4.5391	3.0034	0.82499	4.0001	0.074383
6	0.99919	0.74307	3.0001	0.10856	4.0001	0.00101

The solution obtained
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.99919 \\ 3.0001 \\ 4.0001 \end{bmatrix}$$
 is close to the exact solution of $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$.

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}.$$

Given the system of equations

$$3x_1 + 7x_2 + 13x_3 = 76$$

$$x_1 + 5x_2 + 3x_3 = 28$$

$$12x_1 + 3x_2 - 5x_3 = 1$$

With an initial guess of

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Rewriting the equations

$$x_1 = \frac{76 - 7x_2 - 13x_3}{3}$$

$$x_2 = \frac{28 - x_1 - 3x_3}{5}$$

$$x_3 = \frac{1 - 12x_1 - 3x_2}{-5}$$

Conducting six iterations, the following values are obtained

Iteration	a_1	$\left \in_a \right _1 \%$	A_2	$\left \in_{a} \right _{2} \%$	a_3	$\left \in_{a} \right _{3} \%$
1	21.000	95.238	0.80000	100.00	50.680	98.027
2	-196.15	110.71	14.421	94.453	-462.30	110.96
3	-1995.0	109.83	-116.02	112.43	4718.1	109.80
4	-20149	109.90	1204.6	109.63	-47636	109.90
5	$2.0364 \ 10^5$	109.89	-12140	109.92	$4.8144 \ 10^5$	109.89
6	$-2.0579 10^5$	109.89	$1.2272 \ 10^5$	109.89	$-4.8653 \ 10^6$	109.89

The values are not converging.

Does this mean that the Gauss-Seidel method cannot be used?

The Gauss-Seidel Method can still be used

The coefficient matrix is not diagonally dominant

$$[A] = \begin{bmatrix} 3 & 7 & 13 \\ 1 & 5 & 3 \\ 12 & 3 & -5 \end{bmatrix}$$

But this is the same set of equations used in example #2, which did converge.

$$[A] = \begin{bmatrix} 12 & 3 & -5 \\ 1 & 5 & 3 \\ 3 & 7 & 13 \end{bmatrix}$$

If a system of linear equations is not diagonally dominant, check to see if rearranging the equations can form a diagonally dominant matrix.

Not every system of equations can be rearranged to have a diagonally dominant coefficient matrix.

Observe the set of equations

$$x_1 + x_2 + x_3 = 3$$
$$2x_1 + 3x_2 + 4x_3 = 9$$
$$x_1 + 7x_2 + x_3 = 9$$

Which equation(s) prevents this set of equation from having a diagonally dominant coefficient matrix?

Gauss-Seidel Method Summary

- -Advantages of the Gauss-Seidel Method
- -Algorithm for the Gauss-Seidel Method
- -Pitfalls of the Gauss-Seidel Method

Questions?

Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

http://numericalmethods.eng.usf.edu/topics/gauss_seidel.html

THE END

http://numericalmethods.eng.usf.edu