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Chapter 06.05 
 
Adequacy of Models for Regression 
 
Quality of Fitted Model 
 In the application of regression models, one objective is to obtain an equation 
y=f(x) that best describes the n response data points (x1 ,y1), (x2 ,y2), ....., (xn , yn).  
Consequently, we are faced with answering two basic questions. 

1. Does the model y=f(x) describes the data adequately, that is, is there an 
adequate fit? 

2. How well does the model predict the response variable (predictability)? 
To answer the above questions, let us start from the examination of some measures of 
discrepancies between the whole data and some key central tendency.  Look at the 
two equations given below. 
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where Sr is the sum of the square of the residuals (residual is the difference between 

the observed value, yi and the predicted value, iy
^

), and St is the sum of the square of 

the difference between the observed value and the average value. 
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Figure 1. Spread of data about the mean value of  y 
 
 

 
Figure 2. Spread of data about the regression line. 
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 To normalize with respect to the number of data points, we calculate standard 
deviation, σ  as 

1−
=

n
Stσ          (3) 

However, why is St divided by (n-1) and not n as we have n data points?  This 
is because with the use of the mean in calculating St, we lose the independence of one 
of the degrees of freedom.  That is, if you know the mean of n data points, then the 
value of one of the n data points can be calculated by knowing the other n-1 data 
points.   The standard deviation is an estimate of the spread of the data about its 
average. 

Similarly, to normalize the sum of the square of the residuals with respect to 
the number of data points, the standard error of estimate is calculated as 

mn
Ss r

xy −
=/         (4) 

where m is the number of constants of the model (a straight line model 
xaay 10 += has two constants, 0a and 1a ; an exponential model xaeay 1

0= has two 
constants, 0a and 1a ; a polynomial model 2

210 xaxaay ++=  has three constants, 

0a , 1a and 2a ).  The subscript y/x stands for that the error in the predicted value of y 
for a chosen value of x. 

Why is Sr divided by (n-m) and not n as we have n data points?  This is 
because with the use of the mean in calculating Sr, we lose the independence of m 
degrees of freedom.  
 What inferences can we make about the two equations?  Equation (2) 
measures the discrepancy between the data and the mean.  Recall that the mean of the 
data is a measure of a single point that measures the central tendency of the whole 
data.  Equation (2) contrasts with Equation (1) as Equation (1) measures the 
discrepancy between the vertical distance of the point from the regression line 
(another measure of central tendency).  This line obtained by the least squares method 
gives the best estimate of a line with least sum of deviation.  RS  as calculated 

quantifies the spread around the regression line.  
The objective of least squares method is to obtain a compact equation that best 

describes all the data points. The mean can also be used to describe all the data points.  
The magnitude of the sum of squares of deviation from the mean or from the least 
squares line is therefore a good indicator of how well the mean or least squares 
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characterizes the whole data.  We can liken the sum of squares deviation around the 
mean, TS  as the error or variability in y  without considering the regressor variable, 
x , while RS , the sum of squares deviation around the least square regression line is 
error or variability in y remaining after the dependent variable x  has been considered. 

The difference between these two parameters measures the error due to 
describing or characterizing the data in one form instead of the other.  A relative 
comparison of this difference ( )rt SS − , with the sum of squares deviation associated 
with the mean ( )tS  describes a quantity called coefficient of determination, 2r  

t

rt
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SSr −

=2          (5) 
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== 2         (6) 

Where r , called Pearson's product moment correlation coefficient (PPMCC) 
 Another way of defining 2r  (see Equation 3) is to describe it as the proportion 
of variation in the response data that is explained by the regression model.  We note 
that 10 2 ≤≤ r .  When all points in a data set lie on the regression model, the largest 
value of r2=1 is obtained, while a minimum value of r2=0 is obtained when there is 
only one data point or if the regression model is a constant line given by the average 
of the y data values. 
 
Example 1 
The following y vs. x data is given 
 

x y 
1 
7 
13
19
25

1 
49 
169
361
625
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. Figure 3. Data points of the y vs x data 
 
Although 2xy =  is an exact fit to the data, a scientist thinks that xaay 10 +=  can 

explain the data.  Find  
a) constants of the model, 0a , and 1a , 

b) standard deviation of the data points, 
c) standard error of estimate of the straight line model, 
d) the coefficient of determination for the straight-line model? 

Solution 
a) First find the constants of the assumed model 
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This gives 
               xaay 10 +=  
               xy 2697 +−=  

is the regression formula. 
b) The sum of the squares of the difference between observed value and average 
value, tS  is given by 
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The standard deviation of the observed values is 
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      68.255=  
c) The sum of the squares of the residuals, that is the sum of the square of differences 
between the observed values and the predicted values is 
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The standard error of estimate is 

 
2/ −

=
n
Ss r

xy  

         
25

18144
−

=  

         77.77=  
Since there is an improvement from a standard deviation of 255.68 to a standard error 
of estimate of 77.77, there is merit to explaining the data by the straight line 
    .2697 xy +−=  

d) Then using equation (5), we get 
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       9306.0=  
This implies that 93.06% of the original uncertainty in the data is explained by the 
straight line xy 2697 +−= . 

 
Caution in the use of 2r  

1. 2r  can be made larger (assumes no collinear points) by adding more terms to 
the model. For instance, 1−n  terms in a regression equation for which n  data 
points are used will give an 2r  value of 1 if there are no collinear points. 
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2. The magnitude of 2r  also depends on the range of variability of the regressor 
( )x  variable.  Increase in the spread of x  increases 2r  while a decrease in the 

spread of x decreases 2r . 
3. Large regression slope will also yield artificially high 2r .  
4. 2r  does not measure the appropriateness of the linear model.  2r  may be large 

for nonlinearly related x  and y values. 

5. Large 2r  value does not necessarily imply the regression will predict 
accurately. 

6. 2r  does not measure the magnitude of the regression slope. 
These statements above imply that one should not choose a regression model solely  
based on consideration of 2r . 
 
Other checks for adequacy 

a) Plot the graph and see if the regression model visually explains the data.  
b) Plot the residuals as a function of x to check for increasing variance, outliers 

or nonlinearity. 
c) Check if 95% of the values of scaled residuals are within [-2, 2].  The scaled 

residuals, SR are given by 
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Example 2: Make the other checks for the adequacy of the model in                              
Example 1.  
Solution        

a) Plot the graph as given below (Figure 4).  See if the straight-line regression 
model visually explains the data.  Although you may see a nonlinear trend in 
how the data points are around the straight line, this trend gets visually less 
exaggerated by extending the axis (Figure 5). 
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y vs x
y = 26x - 97
R2 = 0.9306
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Figure 4.  Linear regression model for data 
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Figure 5.  Linear regression model for data in Figure 4 with extended x-axis 

 
b) Plot the residuals as a function of x to check for increasing variance, outliers 

or nonlinearity.  As seen from the residual plot, the residuals ( )ii xaay 10 −−  

do show nonlinearity.  This may be the first indication so far, that the model is 
not adequate. 
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Residuals
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Figure 6.  Residuals for data points 
 

c) Check if 95% of the values of scaled residuals are within [-2, 2].  The scaled 
residuals, SR are given by 
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 where ( )xf the regression function, n is the number of data points and m is the 

number of degrees of freedom lost (constants of the model). 
 

ix  iy  ( ) ii xaaxf 10 += SR 
1 
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( ) 9258.0
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=
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-0.4629 
-0.9258 
-0.4629 
0.9258 

 
All the scaled residuals are between [-2, 2], that is, more than 95% of the scaled 
residuals are in between [-2,2]. 
 
Adequacy of Coefficient of Regression 
A key consideration in any model is the adequacy of the model.  One must always ask 
the question, does the fitted model adequately approximate the response variable?  A 
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negative answer to this question requires reevaluation of the assumed model.  Prior to 
the interpretation of the prediction equation, one needs to consider the adequacy of 
the fit.  This is done by the evaluation of the coefficient of determination.  Having 
answered the adequacy question based on coefficient of determination, one might 
think that the regression coefficient estimates must be close to the true parameter 
values.  There is a fallacy in this belief because wrongly specified model can provide 
acceptable residuals, 2r  and 2σ  even with poorly estimated model parameters.  This 
is the reason why we must examine the adequacy of the model parameters estimators.   
 
Hypothesis Testing in Linear Regression 
The test for significance if regression is to check if a linear relationship exists 
between y and x. The hypothesis is that 

 

If we are unable to reject the hypothesis 0: 10 =aH , it would mean that there is no 

linear relationship between x and y.  This implies whether the relationship between x 
and y is a constant line or that a linear relationship between y and x does not exist. 
Assuming normal distribution and using test statistics, a standard normal random 
valuable is given by 
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We would reject 0H  if 2/αZZ > , where α  denotes the size (probability of  Type I 

error) of the test. If 2σ  is not linear, a t-static can be replaced by xys /   
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Which is distributed a student’s t  with )2( −n  degrees of freedom.  Hence the null 

hypothesis is rejected if ⎟
⎠
⎞

⎜
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ntt α  where ⎟

⎠
⎞

⎜
⎝
⎛ − 2,

2
nt α  denotes the value of the 

t -distribution such that prob
2

2,
2

αα
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −> ntt  

Example 3: From the data of Example 1, determine if the assumption of linear 
relationship is reasonable? 
Solution: 
We to test the regression variable influence the response, that is hypothesis 
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37.120

2160.0
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=  

Since 453.73,025.0 =t  and since 120.37>7.453, we reject the null hypothesis and 

accept the fact that x influences the response of variable y. 
 
Model Estimators 
The theoretical properties of the model parameter estimators are tied to the model 
assumptions. The model assumptions include 

• Model is correctly specified. 
• Predictor variables are non-random and are measured without error. 
• Model error terms have constant variances, zero means and are uncorrelated. 
• Model error terms are normally, independently distributed with mean zero and 

constant variance. 
Since the properties of the estimators are tied to the above assumptions, the adequacy 
of the estimators depend upon the correctness of the assumptions made in deriving 
the model. The estimators 0β  and 1β  are unbiased and their variances are given as 
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where 2
/ xys  is the error variance. For tests of hypothesis, estimated standard errors for 

the slope and intercept are required and use of their variances becomes important. 
Estimation of the error variance is useful here. 
In tests of hypothesis, the estimate of error variance is useful in the calculation of 
estimated errors of regression model coefficients. It is useful in assessing quality of fit 
and prediction capability of the regression model. 
 
Example 4: Find the estimated standard error of the slope and the intercept for 
Example 1. 
Solution: 
 The straight-line regression model calculated was 
        y=-97+26x 
The estimated standard error of slope is 
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                 215.7=  
The estimated standard error of the slope is 0.2160 and the estimated standard error of 
the intercept is 7.215. 
 
Confidence Intervals 
To make inferences about the model coefficients, a more informative way could be 
the use of intervals with in which the parameters will lie.  The probability statement 
associated with the student-t estimation is that for )1( α−  confidence 
interval )%)1(100( α− of slope 1a  in linear regression is  
 )()( 12,2/1112,2/1 aVartaaVart nn −− +≤≤− αα αα                                              (11) 
Similarly for the intercept 0a in linear regression, the )1( α−  confidence interval 

)%)1(100( α−  
 )()( 02,2/0002,2/0 aVartaaVart nn −− +≤≤− αα αα                                            (12) 

 
Example 5: Find the 95% confidence intervals for the slope and intercept of the                              
regression model found in Example 1. 
Solution: The confidence intervals on slope 1a  is 
                 )()( 12,2/1112,2/1 aVartaaVart nn −− +≤≤− αα αα  
And for 0a  is 
               )()( 02,2/0012,2/0 aVartaaVart nn −− +≤≤− αα αα  

05.0=α  
5=n  

2160.0)( 1 =aVar                         (From Example 4) 
215.7)( 0 =aVar                            (From Example 4) 

261 =α                                         (From Example 1) 
970 −=α                                       (From Example 1) 

Hence for the slope 1a , the confidence interval is 
)2160.0(26)2160.0(26 25,025.0125,025.0 −− +≤≤− tat  
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)2160.0(26)2160.0(26 3,025.013,025.0 tat +≤≤−  

)2160.0)(182.3(26)2160.0)(182.3(26 1 +≤≤− a  
82.2631.25 1 ≤≤ a  

and the confidence interval for the intercept 0a is 
)215.7(97)215.7(97 25,025.0025,025.0 −− +−≤≤−− tat  

)215.7(97)215.7(97 3,025.003,025.0 tat +−≤≤−−  
)215.7)(812.3(97)215.7)(812.3(97 0 +−≤≤−− a  

50.690.120 0 −≤≤− a  

 
Data Hazards in Regression 
 The quality or goodness of the relationship between a response variable and 
one or more predictor variables in regression analysis depends largely on the quality 
of the data used. Thus, whether accurate conclusions are made or quality fit is 
obtained is determined by the representativeness of the data used. It is theoretically 
possible to obtain a fit irrespective of the nature of the data, hence the saying that 
“garbage in and garbage out”. Data that are not representative or inconsistent or even 
not properly compiled can result in poor fits and erroneous conclusions. 
 For illustrative purposes, a study in which data obtained from racially 
homogeneous schools cannot be useful in making inferences about racial interactions 
in class and other sundry issues. Data inconsistency arises when there is no 
consistence in the data sampling. Multi collinearity arises when there is a near- linear 
relationship among the regressors. This is a serious problem that can impact the 
usefulness of the regression model since it affects ones ability to estimate regression 
coefficients. Four primary sources of multicollinearity include: 

• Data collection method: When the analyst samples only a subspace of a 
region, the data collection method can lead to multicollinearity problems. 

• Model or population constraints: Constraints on the model or in the population 
being sampled can cause multicollinearity. Example here can be data of two 
regressors that lie approximately along a straight line. 

• Choice of model: The model specification can result in multicollinearity. 
Adding polynomial terms to a regression model may lead to multicollinear-
since it gives rise to ill-conditioning of the matrix product X’X. Also, if the 
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range of the regressor variable is small, adding a squared regressor term can 
result in significant multicollinearity. 

• Over-defined model: A model that has more regressor variables than 
observations is over defined and this may lead to multicollinearity. This is 
common in medical research. 

 Because of limited space, we will not discuss in details several techniques 
available for detecting multicollinearity.  But the simplest method of measuring 
collinearity is the inspection of the off-diagonal elements ijr  in X’X matrix 

product for which ijr  will be near unity if regressors ix  and jx  are linearly 

dependent.  Also the determinant of X’X can be used as an index of 
multicollinearity since 1'0 ≤≤ XX  for matrix X’X which is in correlation form. 

For the regressors, orthogonality arises when 1' =XX  and linear dependence 

when 0' =XX  

 Outliers are data points that are not typical of the rest of the data and thus have 
considerably large residuals form the mean. The existence of outliers should be 
carefully investigated as to find out the reason why they occur. Reasons for their 
existence may be useful in rejecting or accepting them. Faculty measurement, 
lack of precision, incorrect recording of data, faulty instrument or analysis can all 
lead to outliers. Outliers may point out inadequacies in the model and thus a 
follow-up to ascertaining values of the regressor when the response was observed  
may be a useful exercise to improving the model. It is not recommended to just 
drop and outlier without first understanding the reason for its existence-is it a bad 
point or what? Various statistical tests exist for detecting and rejecting outliers. 

The easiest to apply involves the maximum normed residual test: 

∑
=

n

i
i

i

E

E

1

2

  which 

is very large if the response is an outlier. Effect of an outlier may be checked by 
dropping it in the regression model and re-fitting the regression equation. If the 
summary statistics are overtly very sensitive to an outlier, that may not be 
acceptable model. 
 In considering data hazards, the role of controlled and confounding variables 
in the regression equations must not be overlooked. Controlled variables are 
independent variables that the experimenter can manipulate in a systematic way. 
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The controlled variable contrasts with the confounding variable, which although 
and independent variable but for some reason is influence on the outcome of 
experimental results instead of the controlled variables only. The results are said 
to be confounded in this case. An example may suffice to illustrate the concept. 
 Consider a case of drug experiment in which two groups are compared. In one 
group a placebo is given and for the experimental group the active drug is 
prescribed. However, in the analysis of the data, it is discovered that the 
controlled group has a higher average age than the experimental group. The 
disease incidence for which the drug is prescribed is age related. It is possible that 
the observed difference in the treatment results between the two groups may be 
due to the age difference instead of the drug. The age difference is said to have 
confounded the findings. 
 The effects of confounding can include the outcome result appearing smaller 
(under-estimated) or appearing bigger than it is (over-estimated). The direction of 
the observed effect may change as a result of confounding, resulting in a harmful 
factor appearing to be protective or vice versa. An effective method of controlling 
potential confounding factors is through good experimental design and rigorous 
checking for confounding factors at all stages of the study. 
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