
1/10/2010 http://numericalmethods.eng.usf.edu 1

Bisection Method

Mechanical Engineering Majors

Authors: Autar Kaw, Jai Paul

http://numericalmethods.eng.usf.edu
Transforming Numerical Methods Education for STEM 

Undergraduates

http://numericalmethods.eng.usf.edu/�


Bisection Method

http://numericalmethods.eng.usf.edu

http://numericalmethods.eng.usf.edu/�


http://numericalmethods.eng.usf.edu3

Basis of Bisection Method
Theorem
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An equation f(x)=0, where f(x) is a real continuous function, 
has at least one root between xl and xu if f(xl) f(xu) < 0.

Figure 1 At least one root exists between the two points if the function is 
real, continuous, and changes sign.
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Basis of Bisection Method

Figure 2 If function        does not change sign between two 
points, roots of the equation            may still exist between the two 
points.
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Basis of Bisection Method

Figure 3 If the function        does not change sign between two 
points, there may not be any roots for the equation            between 
the two points.
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Basis of Bisection Method

Figure 4 If the function       changes sign between two points,  
more than one root for the equation             may exist between the two 
points.
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Algorithm for Bisection Method
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Step 1
Choose xl and xu as two guesses for the root such that 
f(xl) f(xu) < 0, or in other words, f(x) changes sign 
between xl and xu. This was demonstrated in Figure 1.
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Figure 1
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Step 2
Estimate the root, xm of the equation f (x) = 0 as the mid
point between xl and xu as

x
x

m =  
 xu +

2
 

Figure 5   Estimate of xm
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Step 3
Now check the following

a) If                     , then the root lies between xl and 
xm; then xl = xl ; xu = xm.

b) If                     , then the root lies between xm and 
xu; then xl = xm;  xu = xu.

c) If                     ; then the root is xm.  Stop the 
algorithm if this is true.

( ) ( ) 0<ml xfxf

( ) ( ) 0>ml xfxf

( ) ( ) 0=ml xfxf
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Step 4

x
x

m =  
 xu +

2
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Find the new estimate of the root

Find the absolute relative approximate error

where
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Step 5

Is            ?
Yes

No

Go to Step 2 using new 
upper and lower 

guesses.

Stop the algorithm

Compare the absolute relative approximate error       with 
the pre-specified error tolerance     .

a∈
s∈

sa >∈∈

Note one should also check whether the number of 
iterations is more than the maximum number of iterations 
allowed. If so, one needs to terminate the algorithm and 
notify the user about it.
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Example 1

A trunnion has to be cooled 
before it is shrink fitted into a 
steel hub 

Figure 5 Trunnion to be slid through 
the hub after contracting.

The equation that gives the 
temperature x to which the 
trunnion has to be cooled to 
obtain the desired contraction 
is given by the following 
equation.

( ) 010883180107436301038292010505980 2427310 =×+×+×+×−= −−−− .x.x.x.xf
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Example 1 Cont.
Use the bisection method of 
finding roots of equations 

a) To find the temperature x to 
which the trunnion has to be 
cooled. Conduct three 
iterations to estimate the root 
of the above equation. 

b) Find the absolute relative 
approximate error at the end 
of each iteration, and 

c) the number of significant digits 
at least correct at the end of 
each iteration.
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Example 1 Cont.

( ) 010883180107436301038292010505980 2427310 =×+×+×−×−= −−−− .x.x.x.xf
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Figure 6 Graph of the function f(x).
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Example 1 Cont.
Choose the bracket

( )
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100 and 150 −=−= uxx

Figure 7 Checking that the bracket is valid.

There is at least one root 
between      and     .x ux



The root is bracketed between     
and      .

The lower and upper limits of the 
new bracket are
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Example 1 Cont.
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Iteration 1
The estimate of the root is

x
mx

Figure 7 Graph of the estimated root 
after Iteration 1.

The absolute relative approximate error cannot be calculated, as we do 
not have a previous approximation.
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Example 1 Cont.
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The root is bracketed between     
and      .

The lower and upper limits of the 
new bracket are

Iteration 2
The estimate of the root is

mx
ux

Figure 8 Graph of the estimated root 
after Iteration 2. 125,5.137 −=−= uxx



http://numericalmethods.eng.usf.edu19

Example 1 Cont.
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The absolute relative approximate error at the end of 
Iteration 2 is

The number of significant digits at least correct in the 
estimated root  is 0.
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Example 1 Cont.
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The root is bracketed between     
and      .

The lower and upper limits of the 
new bracket are

Iteration 3
The estimate of the root is

mx
ux

Figure 9 Graph of the estimated root 
after Iteration 2. 125,25.131 −=−= uxx
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Example 1 Cont.
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The absolute relative approximate error at the end of 
Iteration 3 is

The number of significant digits at least correct in the 
estimated root  is 1.
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All Iterations

Figure 10 Graph of Iteration 1. Figure 11 Graph of Iteration 2.

Figure 12 Graph of Iteration 3.



Iteration

1
2
3
4
5
6
7
8
9

10

−150
−150
−137.5
−131.25
−131.25
−129.69
−128.91
−128.91
−128.91
−128.81

−100
−125
−125
−125

−128.13
−128.13
−128.13
−128.52
−128.71
−128.71

−125
−137.5
−131.25
−128.13
−129.69
−128.91
−128.52
−128.71
−128.81
−128.76

---------
9.0909
4.7619
2.4390
1.2048

0.60606
0.30395
0.15175

0.075815
0.037922

2.3356 10−4
−5.3762 10−4
−1.5430 10−4
3.9065 10−5
−5.7760 10−5
−9.3826 10−6
1.4838 10−5
2.7228 10−6
−3.3305 10−6
−3.0396 10−7
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Convergence
Table 1 Root of f(x)=0 as function of number of iterations 

for bisection method.

%a∈lx ux mx ( )mxf
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Advantages

 Always convergent
 The root bracket gets halved with each 

iteration - guaranteed.
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Drawbacks

 Slow convergence
 If one of the initial guesses is close to 

the root, the convergence is slower
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Drawbacks (continued)
 If a function f(x) is such that it just 

touches the x-axis it will be unable to find 
the lower and upper guesses.

 f(x)

 x

( ) 2xxf =
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Drawbacks (continued)
 Function changes sign but root does not 

exist

 f(x)

 x

( )
x

xf 1
=



Additional Resources
For all resources on this topic such as digital audiovisual 
lectures, primers, textbook chapters, multiple-choice 
tests, worksheets in MATLAB, MATHEMATICA, MathCad 
and MAPLE, blogs, related physical problems, please 
visit

http://numericalmethods.eng.usf.edu/topics/bisection_
method.html

http://numericalmethods.eng.usf.edu/topics/bisection_method.html�
http://numericalmethods.eng.usf.edu/topics/bisection_method.html�


THE END
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