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Differentiation of Discrete Functions
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Chapter 02.03

Differentiation of Discrete Functions
After reading this chapter, you should be able to:

1. find approximate values of the first derivative of functions that are given at discrete data points, and
2. use Lagrange polynomial interpolation to find derivatives of discrete functions.
To find the derivatives of functions that are given at discrete points, several methods are available.  Although these methods are mainly used when the data is spaced unequally, they can be used for data that is spaced equally as well.

Forward Difference Approximation of the First Derivative
We know
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	Figure 1 Graphical representation of forward difference approximation of first derivative.


So given 
[image: image5.wmf]1

+

n

 data points 
[image: image6.wmf](

)

(

)

(

)

(

)

n

n

y

x

y

x

y

x

y

x

,

,

,

,

,

,

,

,

2

2

1

1

0

0

K

, the value of 
[image: image7.wmf])

(

x

f

¢

 for 
[image: image8.wmf]1

+

£

£

i

i

x

x

x

, 
[image: image9.wmf]1

,...,

0

-

=

n

i

, is given by



[image: image10.wmf](

)

(

)

(

)

i

i

i

i

i

x

x

x

f

x

f

x

f

-

-

»

¢

+

+

1

1


Example 1

A new fuel for recreational boats being developed at the local university was tested at an area pond by a team of engineers. Their interest is to document the environmental impact of the fuel – how quickly does the slick spread?  Table 1 shows the video camera record of the radius of the wave generated by a drop of the fuel that fell into the pond.  Using the data,

(a) Compute the rate at which the radius of the drop was changing at 
[image: image11.wmf]2
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 seconds.

(b) Estimate the rate at which the area of the contaminant was spreading across the pond at 
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 seconds.

       Table 1 Radius as a function of time.
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	1.886
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Use the forward divided difference approximation of the first derivative to solve the above problem. Use a time step of 0.5 seconds.

Solution
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Direct Fit Polynomials

In this method, given 
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To find the first derivative,
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Similarly, other derivatives can also be found.

Example 2

A new fuel for recreational boats being developed at the local university was tested at an area pond by a team of engineers. Their interest is to document the environmental impact of the fuel – how quickly does the slick spread?  Table 2 shows the video camera record of the radius of the wave generated by a drop of the fuel that fell into the pond.  Using the data,

(a) Compute the rate at which the radius of the drop was changing at 
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(b) Estimate the rate at which the area of the contaminant was spreading across the pond at 
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       Table 2 Radius as a function of time.
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 Use a third order polynomial interpolant for the radius and area calculations. 

Solution

(a)     For third order polynomial interpolation (also called cubic interpolation), we choose the radius given by 
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Since we want to find the radius at 
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, and we are using a third order polynomial, we need to choose the four points closest to 
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Writing the four equations in matrix form, we have
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Solving the above gives


[image: image62.wmf]0.08

0

-

=

a




[image: image63.wmf]0.471

1

=

a




[image: image64.wmf]0.296

2

=

a




[image: image65.wmf]0.02

3

-

=

a


Hence


[image: image66.wmf](

)

3

3

2

2

1

0

t

a

t

a

t

a

a

t

R

+

+

+

=


                      
[image: image67.wmf]5

.

2

1

,

02

.

0

296

.

0

471

.

0

08

.

0

3

2

£

£

-

+

+

-

=

t

t

t

t


	   [image: image68.png]Radius m)

25

Radius vs. Time

Time (s)

25






	Figure 1  Graph of radius vs. time.


The derivative of the radius at 
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For third order polynomial interpolation (also called cubic interpolation), we choose the area given by
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Since we want to find the area at 
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Writing the four equations in matrix form, we have
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Solving the above gives
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	Figure 2 Graph of area vs. time.


The derivative of the area at 
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Lagrange Polynomial

In this method, given 
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Then to find the first derivative, one can differentiate 
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For example, the second order Lagrange polynomial passing through 
[image: image128.wmf](

)

(

)

(

)

2

2

1

1

0

0

,

 

and

 

,

,

,

,

y

x

y

x

y

x

 is 



[image: image129.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

2

1

2

0

2

1

0

1

2

1

0

1

2

0

0

2

0

1

0

2

1

2

x

f

x

x

x

x

x

x

x

x

x

f

x

x

x

x

x

x

x

x

x

f

x

x

x

x

x

x

x

x

x

f

-

-

-

-

+

-

-

-

-

+

-

-

-

-

=


Differentiating the above equation gives
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Differentiating again would give the second derivative as
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Example 3

A new fuel for recreational boats being developed at the local university was tested at an area pond by a team of engineers. Their interest is to document the environmental impact of the fuel – how quickly does the slick spread?  Table 3 shows the video camera record of the radius of the wave generated by a drop of the fuel that fell into the pond.  Using the data,

(a) Compute the rate at which the radius of the drop was changing at 
[image: image132.wmf]2

=

t

 seconds.

(b) Estimate the rate at which the area of the contaminant was spreading across the pond at 
[image: image133.wmf]2

=

t

 seconds.

       Table 3 Radius as a function of time.
	Time, 
[image: image134.wmf](

)

s

  

t


	0
	0.5
	1.0
	1.5
	2.0
	2.5
	3.0
	3.5
	4.0

	Radius, 
[image: image135.wmf](

)

m

  

R


	0
	0.236
	0.667
	1.225
	1.886
	2.635
	3.464
	4.365
	5.333


Use second order Lagrangian polynomial interpolation to solve the problem.

Solution

(a)  For second order Lagrangian polynomial interpolation, we choose the radius given by 
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Since we want to find the radius at 
[image: image137.wmf]2

=

t

, and we are using a second order Lagrangian polynomial, we need to choose the three points closest to 
[image: image138.wmf]2

=

t

 that also bracket 
[image: image139.wmf]2

=

t

 to evaluate it.

The three points are 
[image: image140.wmf]5

.

1

0

=

t
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[image: image141.wmf]0

.
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, and 
[image: image142.wmf]5
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Differentiating the above equation gives
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(b) 
[image: image150.wmf]2
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	Time, 
[image: image151.wmf](
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	Area, 
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	0
	0.17497
	1.3977
	4.7144
	11.175
	21.813
	37.697
	59.857
	89.350


For second order Lagrangian polynomial interpolation, we choose the area given by 
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Since we want to find the area at 
[image: image154.wmf]2
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, and we are using a second order Lagrangian polynomial, we need to choose the three points closest to 
[image: image155.wmf]2
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 that also bracket 
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 to evaluate it. The three points are 
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Differentiating the above equation gives
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