Chapter 03.01
 Solution of Quadratic Equations

After reading this chapter, you should be able to:

1. find the solutions of quadratic equations,
2. derive the formula for the solution of quadratic equations,
3. solve simple physical problems involving quadratic equations.

What are quadratic equations and how do we solve them?

A quadratic equation has the form
$a x^{2}+b x+c=0$, where $a \neq 0$
The solution to the above quadratic equation is given by

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

So the equation has two roots, and depending on the value of the discriminant, $b^{2}-4 a c$, the equation may have real, complex or repeated roots.

If $b^{2}-4 a c<0$, the roots are complex.
If $b^{2}-4 a c>0$, the roots are real.
If $b^{2}-4 a c=0$, the roots are real and repeated.

Example 1

Derive the solution to $a x^{2}+b x+c=0$.

Solution

$$
a x^{2}+b x+c=0
$$

Dividing both sides by $a,(a \neq 0)$, we get

$$
x^{2}+\frac{b}{a} x+\frac{c}{a}=0
$$

Note if $a=0$, the solution to

$$
a x^{2}+b x+c=0
$$

is

$$
x=-\frac{c}{b}
$$

Rewrite

$$
x^{2}+\frac{b}{a} x+\frac{c}{a}=0
$$

as

$$
\begin{aligned}
& \left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a^{2}}+\frac{c}{a}=0 \\
& \begin{aligned}
&\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a^{2}}-\frac{c}{a} \\
&=\frac{b^{2}-4 a c}{4 a^{2}}
\end{aligned} \\
& x+\frac{b}{2 a}= \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}} \\
& = \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} \\
& x=-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

Example 2

A ball is thrown down at 50 mph from the top of a building. The building is 420 feet tall. Derive the equation that would let you find the time the ball takes to reach the ground.

Solution

The distance s covered by the ball is given by

$$
s=u t+\frac{1}{2} g t^{2}
$$

where

$$
\begin{aligned}
& u=\text { initial velocity (ft/s) } \\
& g=\text { acceleration due to gravity }\left(\mathrm{ft} / \mathrm{s}^{2}\right) \\
& t=\text { time }(\mathrm{s})
\end{aligned}
$$

Given

$$
\begin{aligned}
u & =50 \frac{\text { miles }}{\text { hour }} \times \frac{1 \text { hour }}{3600 \mathrm{~s}} \times \frac{5280 \mathrm{ft}}{1 \mathrm{mile}} \\
& =73.33 \frac{\mathrm{ft}}{\mathrm{~s}} \\
g & =32.2 \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \\
s & =420 \mathrm{ft}
\end{aligned}
$$

we have

$$
\begin{aligned}
& 420=73.33 t+\frac{1}{2}(32.2) t^{2} \\
& 16.1 t^{2}+73.33 t-420=0
\end{aligned}
$$

The above equation is a quadratic equation, the solution of which would give the time it would take the ball to reach the ground. The solution of the quadratic equation is

$$
\begin{aligned}
t & =\frac{-73.33 \pm \sqrt{73.33^{2}-4 \times 16.1 \times(-420)}}{2(16.1)} \\
& =3.315,-7.870
\end{aligned}
$$

Since $t>0$, the valid value of time t is 3.315 s .

NONLINEAR EQUATIONS	
Topic	Solution of quadratic equations
Summary	Textbook notes on solving quadratic equations
Major	General Engineering
Authors	Autar Kaw
Date	July 3, 2009
Web Site	http://numericalmethods.eng.usf.edu

