05.01.8

                                                       Chapter 05.02
Direct Method of Interpolation                                                                                      05.01.9

Chapter 05.02
Direct Method of Interpolation
After reading this chapter, you should be able to:
1. apply the direct method of interpolation,

2. solve problems using the direct method of interpolation, and
3. use the direct method interpolants to find derivatives and integrals of discrete functions.
What is interpolation?

Many times, data is given only at discrete points such as 
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 points (Figure 1).  Then one can find the value of 
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Of course, if 
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 for which the data is given, it is no longer interpolation but instead is called extrapolation.  


So what kind of function 
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 should one choose?  A polynomial is a common choice for an interpolating function because polynomials are easy to 

(A) evaluate,
(B) differentiate, and

(C) integrate

relative to other choices such as a trigonometric and exponential series. 


Polynomial interpolation involves finding a polynomial of order 
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 points.  One of the methods of interpolation is called the direct method.  Other methods include Newton’s divided difference polynomial method and the Lagrangian interpolation method.  We will discuss the direct method in this chapter.
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	        Figure 1   Interpolation of discrete data.


Direct Method

The direct method of interpolation is based on the following premise.  Given 
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through the data, where 
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 can be found by solving the 
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 simultaneous linear equations.  To find the value of 
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But, it is not necessary to use all the data points.  How does one then choose the order of the polynomial and what data points to use?  This concept and the direct method of interpolation are best illustrated using examples.
Example 1
To find how much heat is required to bring a kettle of water to its boiling point, you are asked to calculate the specific heat of water at 
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. The specific heat of water is given as a  function of time in Table 1. 

Table 1  Specific heat of water as a function of temperature.

	Temperature, 
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Determine the value of the specific heat at 
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 using the direct method of interpolation and a first order polynomial.
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	                        Figure 2  Specific heat of water vs. temperature.


Solution

For first order polynomial interpolation (also called linear interpolation), we choose the specific heat given by
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	         Figure 3   Linear interpolation.


Since we want to find the specific heat at 
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, and we are using a first order polynomial, we need to choose the two data points that are closest to 
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Writing the equations in matrix form, we have
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Solving the above two equations gives
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Example 2

To find how much heat is required to bring a kettle of water to its boiling point, you are asked to calculate the specific heat of water at 
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°

. The specific heat of water is given as a function of time in Table 2. 

Table 2  Specific heat of water as a function of temperature.

	Temperature, 
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Determine the value of the specific heat at 
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 using the direct method of interpolation and a second order polynomial. Find the absolute relative approximate error for the second order polynomial approximation.

Solution

For second order polynomial interpolation (also called quadratic interpolation), we choose the specific heat given by
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	        Figure 4   Quadratic interpolation.


Since we want to find the specific heat at 
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, and we are using a second order polynomial, we need to choose the three data points that are closest to 
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Writing the three equations in matrix form, we have



[image: image80.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

ú

ú

ú

û

ù

ê

ê

ê

ë

é

4199

4186

4179

6724

82

1

2704

52

1

1764

42

1

2

1

0

a

a

a


Solving the above three equations gives
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The absolute relative approximate error 
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 obtained between the results from the first and second order polynomial is
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Example 3

To find how much heat is required to bring a kettle of water to its boiling point, you are asked to calculate the specific heat of water at 
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. The specific heat of water is given as a function of time in Table 3. 

Table 3  Specific heat of water as a function of temperature.

	Temperature, 
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Determine the value of the specific heat at 
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 using the direct method of interpolation and a third order polynomial.  Find the absolute relative approximate error for the third order polynomial approximation.

Solution

For third order polynomial interpolation (also called cubic interpolation), we choose the specific heat given by
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	         Figure 5  Cubic interpolation.


Since we want to find the specific heat at 
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, and we are using a third order polynomial, we need to choose the four data points closest to 
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Writing the four equations in matrix form, we have
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Solving the above four equations gives
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The absolute relative approximate error 
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