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Forward Difference 
Approximation
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Figure 1 Graphical Representation of forward difference approximation of first derivative.

Graphical Representation Of 
Forward Difference 

Approximation



http://numericalmethods.eng.usf.edu5

Example 1
To find the stress concentration around a hole in a plate under a uniform 
stress, a finite difference program has been written that calculates the 
radial and tangential displacements at different points in the plate. To 
find the stresses and hence the stress concentration factor, one needs to 
find the derivatives of these displacements. In Table 1 the radial 
displacements ,    , are given along the y-axes. The radius of the hole is 
1.0 cm.

u

a) At 0=x if the radial strain, rε is given by 
r
u

r ∂
∂

=ε , find the radial

strain at cm1.1=r using forward divided difference method. 

b) If the tangential strain at 090,cm1.1 == θr is given to you as 
0029733.0=θε , find the hoop stress, θσ , at 090,1.1 == θcmr

if )(
1 2 θθ νεε

ν
σ +

−
= r

E , where                     and            .GPa 200=E 3.0=ν
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Example 1 Cont.

1.0 −0.0010000

1.1 −0.0010689

1.2 −0.0011088

1.3 −0.0011326

1.4 −0.0011474

1.5 −0.0011574

1.6 −0.0011650

1.7 −0.0011718

1.8 −0.0011785

1.9 −0.0011857

Table 1 Radial displacement as a function of location.
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Example 1 Cont.
Solution:
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Example 1 Cont.
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b) )(
1 2 θθ νεε

ν
σ +

−
= r

E

)0029733.03.000039900.0(
3.01

102
2

11

×+−
−
×

=

Pa1035.108 6×=
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Direct Fit Polynomials
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In this method, given data points

one can fit a order polynomial given by

To find the first derivative,

Similarly other derivatives can be found.
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Example 2-Direct Fit Polynomials
To find the stress concentration around a hole in a plate under a uniform 
stress, a finite difference program has been written that calculates the 
radial and tangential displacements at different points in the plate. To 
find the stresses and hence the stress concentration factor, one needs to 
find the derivatives of these displacements. In Table 2 the radial 
displacements,    , are given along y-axes. The radius of the hole is 
1.0 cm.

u

a) At 0=x if the radial strain, rε is given by 
r
u

r ∂
∂

=ε , find the radial

strain at cm1.1=r . Use a third order polynomial interpolant for

b) If the tangential strain at 090 ,cm1.1 == θr is given to you as 

0029733.0=θε , find the hoop stress, θσ , at 090 cm,1.1 == θr

if )(
1 2 θθ νεε

ν
σ +

−
= r

E , where                     and            .GPa 200=E 3.0=ν

calculating the radial strain.
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Example 2-Direct Fit Polynomials cont.

1.0 −0.0010000

1.1 −0.0010689

1.2 −0.0011088

1.3 −0.0011326

1.4 −0.0011474

1.5 −0.0011574

1.6 −0.0011650

1.7 −0.0011718

1.8 −0.0011785

1.9 −0.0011857

Table 2 Radial displacement as a function of location.
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Example 2-Direct Fit Polynomials cont.

For the third order polynomial (also called cubic interpolation), we choose the 
displacement given by 

Since we want to find the radial strain at                  , and we are using a 
third order polynomial, we need to choose the four points closest to              
and that also bracket                to evaluate it. 

1.1=r
1.1=r

The four points are

( ) 3
3

2
210 rararaaru +++=

3.1 and ,2.1,1.1,0.1 3210 ==== rrrr

( ) 0010000.0,0.1 −== oo rur

( ) 0010689.0,1.1 11 −== rur

( ) 0011088.0,2.1 22 −== rur

( ) 0011326.0,3.1 33 −== rur

Solution:

cm 1.1=r
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Example 2-Direct Fit Polynomials cont.
such that

Writing the four equations in matrix form, we have

( ) ( ) ( ) ( )33
2

210 1110010000.00.1 aaaau +++=−=

( ) ( ) ( ) ( )33
2

210 1.11.11.10010689.01.1 aaaau +++=−=

( ) ( ) ( ) ( )33
2

210 2.12.12.10011088.02.1 aaaau +++=−=

( ) ( ) ( ) ( )33
2

210 3.13.13.10011326.03.1 aaaau +++=−=
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Example 2-Direct Fit Polynomials cont.

Solving the above four equations gives

0041220.00 =a
-0.00115171 =a
0.00854502 =a

-0.00215003 =a

Hence

( ) 3
3

2
210 rararaaru +++=

3.11,0021500.00085450.00011517.00041220.0 32 ≤≤−+−= rrrr
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Example 2-Direct Fit Polynomials 
cont.

Figure 2 Graph of Radial Displacement vs. Location 



http://numericalmethods.eng.usf.edu16

Example 2-Direct Fit Polynomials cont.

The derivative of radial displacement at                    is given by

Given that

( ) ( )
1.1

' 1.1
=

=
r

ru
dr
du

( ) 3.11 ,0021500.00085450.00011517.00041220.0 32 ≤≤−+−= rrrrru

( ) ( )

( )
3.11,0.0064500017090.00011517.0  

0021500.00085450.00011517.00041220.0

   

2

32

'

≤≤−+−=

−+−=

=

rrr

rrr
dr
d

ru
dr
dru

cm1.1=r

( )
cm/cm0.00052250

)1.1(0.0064500-)1.1(017090.00011517.01.1 2'

−=
+−=u

cm/cm00052250.0−=rε
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Example 2-Direct Fit Polynomials cont.

b) )(
1 2 θθ νεε

ν
σ +

−
= r

E

)0029733.03.000052250.0(
3.01

102
2

11

×+−
−
×

=

Pa1081.207 6×=
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Lagrange Polynomial
( ) ( )nn yxyx ,,,, 11  ( )thn 1−In this method, given , one can fit a order Lagrangian polynomial

given by

∑
=

=
n

i
iin xfxLxf

0
)()()(

where ‘ n ’ in )(xfn stands for the thn order polynomial that approximates the function 

)(xfy = given at )1( +n data points as ( ) ( ) ( ) ( )nnnn yxyxyxyx ,,,,......,,,, 111100 −− , and

∏
≠
= −

−
=

n

ij
j ji

j
i xx

xx
xL

0

)(

)(xLi
a weighting function that includes a product of )1( −n terms with terms of

ij = omitted.
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Then to find the first derivative, one can differentiate ( )xfn

for other derivatives.

For example, the second order Lagrange polynomial passing through 

( ) ( ) ( )221100 ,,,,, yxyxyx is 

( ) ( )( )
( )( ) ( ) ( )( )

( )( ) ( ) ( )( )
( )( ) ( )2

1202

10
1

2101

20
0

2010

21
2 xf

xxxx
xxxxxf

xxxx
xxxxxf

xxxx
xxxxxf

−−
−−

+
−−
−−

+
−−
−−

=

Differentiating equation (2) gives

once, and so on

Lagrange Polynomial Cont.
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1
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+
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Differentiating again would give the second derivative as

Lagrange Polynomial Cont.
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Example 3
To find the stress concentration around a hole in a plate under a uniform 
stress, a finite difference program has been written that calculates the 
radial and tangential displacements at different points in the plate. To 
find the stresses and hence the stress concentration factor, one needs to 
find the derivatives of these displacements. In Table 3 the radial 
displacements    , are given along the y-axes. The radius of the hole is 
1.0 cm

u

a) At 0=x , if the radial strain, rε , is given by 
r
u

r ∂
∂

=ε , find the radial

strain at cm1.1=r . Use a second order Lagrange polynomial

b) If the tangential strain at 090 cm,1.1 == θr is given to you as 

0029733.0=θε , find the hoop stress, θσ , at 090 cm,1.1 == θr

if )(
1 2 θθ νεε

ν
σ +

−
= r

E

interpolant for calculating the radial strain.

, where                     and            .GPa 200=E 3.0=ν
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Example 3 Cont.

1.0 −0.0010000

1.1 −0.0010689

1.2 −0.0011088

1.3 −0.0011326

1.4 −0.0011474

1.5 −0.0011574

1.6 −0.0011650

1.7 −0.0011718

1.8 −0.0011785

1.9 −0.0011857

Table 3 Radial displacement as a function of location.
)(cmr )(cmu



http://numericalmethods.eng.usf.edu23

Solution:

Example 3 Cont.
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For second order Lagrangian interpolation, we choose the radial 
displacement given by

Since we want to find the rate of change in the radial displacement at 
, and we are using second order Lagrangian interpolation, we 

need to choose the three points closest to                that also bracket
to evaluate it.cm 1.1=r

cm 1.1=r
cm 1.1=r

The three points are                                         .2.1 and ,1.1,0.1 210 === rrr
( ) 0010000.0,0.1 00 −== rur
( ) 0010689.0,1.1 11 −== rur

( ) 0011088.0,2.1 22 −== rur
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Example 3 Cont.

( ) ( )
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( ) ( ) ( )
( )( ) ( ) ( ) ( )

( )( ) ( )

( ) ( )
( )( ) ( )0.0011088

1.12.10.12.1
1.10.11.12

0.0010689
2.11.10.11.1

2.10.11.120010000.0
2.10.11.10.1

2.11.11.121.1'

−
−−
+−

+

−
−−
+−

+−
−−
+−

=u

The change in the radial displacement at                is given bycm 1.1=r
( )

1.1
)(1.1

=
=

r
ru

dr
d

dr
du

Hence

( ) ( ) ( )0011088.050010689.000010000.05 −+−+−−=

cm/cm0.00054400 −=
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Example 3 Cont.
b) )(

1 2 θθ νεε
ν

σ +
−

= r
E

)0029733.03.000054400.0(
3.01

102
2

11

×+−
−
×

=

Pa1076.481 6×=



Additional Resources
For all resources on this topic such as digital audiovisual 
lectures, primers, textbook chapters, multiple-choice 
tests, worksheets in MATLAB, MATHEMATICA, MathCad 
and MAPLE, blogs, related physical problems, please 
visit

http://numericalmethods.eng.usf.edu/topics/discrete_02
dif.html

http://numericalmethods.eng.usf.edu/topics/discrete_02dif.html�
http://numericalmethods.eng.usf.edu/topics/discrete_02dif.html�


THE END
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