Taylor Series Revisited Major: All Engineering Majors

Authors: Autar Kaw, Luke Snyder

http://numericalmethods.eng.usf.edu

Transforming Numerical Methods Education for STEM
Undergraduates

Taylor Series Revisited

http://numericalmethods.eng.usf.edu

What is a Taylor series?

Some examples of Taylor series which you must have seen

$$
\begin{aligned}
& \cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
& \sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \\
& e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
\end{aligned}
$$

General Taylor Series

The general form of the Taylor series is given by

$$
f(x+h)=f(x)+f^{\prime}(x) h+\frac{f^{\prime \prime}(x)}{2!} h^{2}+\frac{f^{\prime \prime \prime}(x)}{3!} h^{3}+\cdots
$$

provided that all derivatives of $f(x)$ are continuous and exist in the interval $[\mathrm{x}, \mathrm{x}+\mathrm{h}$]

What does this mean in plain English?
As Archimedes would have said, "Give me the value of the function at a single point, and the value of all (first, second, and so on) its derivatives at that single point, and I can give you the value of the function at any other point" (fine print excluded)

Example-Taylor Series

Find the value of $f(6)$ given that $f(4)=125, f^{\prime}(4)=74$, $f^{\prime \prime}(4)=30, f^{\prime \prime \prime}(4)=6$ and all other higher order derivatives of $f(x)$ at $x=4$ are zero.

Solution:

$$
\begin{aligned}
f(x+h) & =f(x)+f^{\prime}(x) h+f^{\prime \prime}(x) \frac{h^{2}}{2!}+f^{\prime \prime \prime}(x) \frac{h^{3}}{3!}+\cdots \\
x & =4 \\
h & =6-4=2
\end{aligned}
$$

Example (cont.)

Solution: (cont.)

Since the higher order derivatives are zero,

$$
\begin{aligned}
f(4+2) & =f(4)+f^{\prime}(4) 2+f^{\prime \prime}(4) \frac{2^{2}}{2!}+f^{\prime \prime \prime}(4) \frac{2^{3}}{3!} \\
f(6) & =125+74(2)+30\left(\frac{2^{2}}{2!}\right)+6\left(\frac{2^{3}}{3!}\right) \\
& =125+148+60+8 \\
& =341
\end{aligned}
$$

Note that to find $f(6)$ exactly, we only need the value of the function and all its derivatives at some other point, in this case $x=4$

Derivation for Maclaurin Series for e^{x}

Derive the Maclaurin series

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

The Maclaurin series is simply the Taylor series about the point $x=0$

$$
\begin{aligned}
& f(x+h)=f(x)+f^{\prime}(x) h+f^{\prime \prime}(x) \frac{h^{2}}{2!}+f^{\prime \prime \prime}(x) \frac{h^{3}}{3!}+f^{\prime \prime \prime \prime}(x) \frac{h^{4}}{4}+f^{\prime \prime \prime \prime \prime}(x) \frac{h^{5}}{5}+\cdots \\
& f(0+h)=f(0)+f^{\prime}(0) h+f^{\prime \prime}(0) \frac{h^{2}}{2!}+f^{\prime \prime \prime}(0) \frac{h^{3}}{3!}+f^{\prime \prime \prime \prime}(0) \frac{h^{4}}{4}+f^{\prime \prime \prime \prime \prime}(0) \frac{h^{5}}{5}+\cdots
\end{aligned}
$$

Derivation (cont.)

Since $f(x)=e^{x}, f^{\prime}(x)=e^{x}, f^{\prime \prime}(x)=e^{x}, \ldots, f^{n}(x)=e^{x}$ and
$f^{n}(0)=e^{0}=1$
the Maclaurin series is then

$$
\begin{aligned}
f(h) & =\left(e^{0}\right)+\left(e^{0}\right) h+\frac{\left(e^{0}\right)}{2!} h^{2}+\frac{\left(e^{0}\right)}{3!} h^{3} \ldots \\
& =1+h+\frac{1}{2!} h^{2}+\frac{1}{3!} h^{3} \ldots
\end{aligned}
$$

So,

$$
f(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots
$$

Error in Taylor Series

The Taylor polynomial of order n of a function $f(x)$ with $(n+1)$ continuous derivatives in the domain [$x, x+h$] is given by

$$
f(x+h)=f(x)+f^{\prime}(x) h+f^{\prime \prime}(x) \frac{h^{2}}{2!}+\cdots+f^{(n)}(x) \frac{h^{n}}{n!}+R_{n}(x)
$$

where the remainder is given by

$$
R_{n}(x)=\frac{(x-h)^{n+1}}{(n+1)!} f^{(n+1)}(c)
$$

where

$$
x<c<x+h
$$

that is, c is some point in the domain [$\mathrm{x}, \mathrm{x}+\mathrm{h}$]

Example-error in Taylor series

The Taylor series for e^{x} at point $x=0$ is given by

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\cdots
$$

It can be seen that as the number of terms used increases, the error bound decreases and hence a better estimate of the function can be found.

How many terms would it require to get an approximation of e^{1} within a magnitude of true error of less than 10^{-6}.

Example-(cont.)

Solution:

Using ($n+1$) terms of Taylor series gives error bound of

$$
\begin{aligned}
R_{n}(x) & =\frac{(x-h)^{n+1}}{(n+1)!} f^{(n+1)}(c) \quad x=0, h=1, f(x)=e^{x} \\
R_{n}(0) & =\frac{(0-1)^{n+1}}{(n+1)!} f^{(n+1)}(c) \\
& =\frac{(-1)^{n+1}}{(n+1)!} e^{c}
\end{aligned}
$$

Since

$$
\begin{aligned}
& x<c<x+h \\
& 0<c<0+1 \\
& 0<c<1
\end{aligned} \quad \frac{1}{(n+1)!}<\left|R_{n}(0)\right|<\frac{e}{(n+1)!}
$$

Example-(cont.)

Solution: (cont.)
So if we want to find out how many terms it would require to get an approximation of e^{1} within a magnitude of true error of less than 10^{-6},

$$
\begin{aligned}
& \frac{e}{(n+1)!}<10^{-6} \\
& (n+1)!>10^{6} e \\
& (n+1)!>10^{6} \times 3 \\
& n \geq 9
\end{aligned}
$$

So 9 terms or more are needed to get a true error less than 10^{-6}

Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit
http://numericalmethods.eng.usf.edu/topics/taylor_seri es.html

THE END

http:// numericalmethods.eng.usf.edu

