Direct Method of Interpolation

Computer Engineering Majors
Authors: Autar Kaw, Jai Paul
http:// numericalmethods.eng.usf.edu
Transforming Numerical Methods Education for STEM Undergraduates

Direct Method of Interpolation

http://numericalmethods.eng.usf.edu

What is Interpolation ?

Given $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots . .\left(x_{n}, y_{n}\right)$, find the value of ' y ' at a value of ' x ' that is not given.

Figure 1 Interpolation of discrete.

Interpolants

Polynomials are the most common choice of interpolants because they are easy to:

\author{

- Evaluate
 - Differentiate, and
 - Integrate
}

Direct Method

Given ' $n+1$ ' data points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots \ldots \ldots . . .\left(x_{n}, y_{n}\right)$, pass a polynomial of order ' n ' through the data as given below:

$$
y=a_{0}+a_{1} x+\ldots \ldots \ldots \ldots \ldots \ldots+a_{n} x^{n}
$$

where $a_{0}, a_{1}, \ldots \ldots \ldots \ldots \ldots a_{n}$ are real constants.

- Set up ' $n+1$ ' equations to find ' $n+1$ ' constants.
- To find the value ' y ' at a given value of ' x ', simply substitute the value of ' x ' in the above polynomial.

Example

A robot arm with a rapid laser scanner is doing a quick quality check on holes drilled in a rectangular plate. The hole centers in the plate that describe the path the arm needs to take are given below.

If the laser is traversing from $x=2$ to $x=4.25$ in a linear path, find the value of y at $x=4$ using the direct method for linear interpolation.

$x(\mathrm{~m})$	$y(\mathrm{~m})$
2	7.2
4.25	7.1
5.25	6.0
7.81	5.0
9.2	3.5
10.6	5.0

Figure 2 Location of holes on the rectangular plate.

Linear Interpolation

$$
\begin{gathered}
y(x)=a_{0}+a_{1} x \\
y(2.00)=a_{0}+a_{1}(2.00)=7.2 \\
y(4.25)=a_{0}+a_{1}(4.25)=7.1
\end{gathered}
$$

Solving the above two equations gives,

$$
a_{0}=7.2889 \quad a_{1}=-0.044444
$$

Hence

$$
\begin{aligned}
& y(x)=7.2889-0.044444 x, \quad 2.00 \leq x \leq 4.25 \\
& y(4.00)=7.2889-0.044444(4.00)=7.1111 \mathrm{in} .
\end{aligned}
$$

Example

A robot arm with a rapid laser scanner is doing a quick quality check on holes drilled in a rectangular plate. The hole centers in the plate that describe the path the arm needs to take are given below.

If the laser is traversing from $x=2$ to $x=4.25$ in a linear path, find the value of y at $x=4$ using the direct method for quadratic interpolation.

$x(\mathrm{~m})$	$y(\mathrm{~m})$
2	7.2
4.25	7.1
5.25	6.0
7.81	5.0
9.2	3.5
10.6	5.0

Figure 2 Location of holes on the rectangular plate.

Quadratic Interpolation

 $y(x)=a_{0}+a_{1} x+a_{2} x^{2}$$y(2.00)=a_{0}+a_{1}(2.00)+a_{2}(2.00)^{2}=7.2$
$y(4.25)=a_{0}+a_{1}(4.25)+a_{2}(4.25)^{2}=7.1$
$y(5.25)=a_{0}+a_{1}(5.25)+a_{2}(5.25)^{2}=6.0$
Solving the above three equations gives

$$
a_{0}=4.5282 \quad a_{1}=1.9855 \quad a_{2}=-0.32479
$$

Quadratic Interpolation (contd)

$$
\begin{aligned}
& y(x)=4.5282+1.9855 x-0.32479 x^{2}, \quad 2.00 \leq x \leq 5.25 \\
& y(4.00)=4.5282+1.9855(4.00)-0.32479(4.00)^{2}
\end{aligned}
$$

$$
\text { = } 7.2735 \mathrm{in} .
$$

The absolute relative approximate error $\left|\epsilon_{a}\right|$ obtained between first and second order polynomial is

$$
\begin{aligned}
\left|\epsilon_{a}\right| & =\left|\frac{7.2735-7.1111}{7.2735}\right| \times 100 \\
& =2.2327 \%
\end{aligned}
$$

Comparison Table

Order of Polynomial	1	2
Location (in.)	7.1111	7.2735
Absolute Relative Approximate Error	---------	2.2327%

Example

A robot arm with a rapid laser scanner is doing a quick quality check on holes drilled in a rectangular plate. The hole centers in the plate that describe the path the arm needs to take are given below.

If the laser is traversing from $x=2$ to $x=4.25$ in a linear path, find the value of y at $x=4$ using the direct method using a fifth order polynomial.

$x(\mathrm{~m})$	$y(\mathrm{~m})$
2	7.2
4.25	7.1
5.25	6.0
7.81	5.0
9.2	3.5
10.6	5.0

Figure 2 Location of holes on the rectangular plate.

Fifth Order Interpolation

$$
\begin{gathered}
y(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5} \\
y(2.00)=7.2=a_{0}+a_{1}(2.00)+a_{2}(2.00)^{2}+a_{3}(2.00)^{3}+a_{4}(2.00)^{4}+a_{5}(2.00)^{5} \\
y(4.25)=7.1=a_{0}+a_{1}(4.25)+a_{2}(4.25)^{2}+a_{3}(4.25)^{3}+a_{4}(4.25)^{4}+a_{5}(4.25)^{5} \\
y(5.25)=6.0=a_{0}+a_{1}(5.25)+a_{2}(5.25)^{2}+a_{3}(5.25)^{3}+a_{4}(5.25)^{4}+a_{5}(5.25)^{5} \\
y(7.81)=5.0=a_{0}+a_{1}(7.81)+a_{2}(7.81)^{2}+a_{3}(7.81)^{3}+a_{4}(7.81)^{4}+a_{5}(7.81)^{5} \\
y(9.20)=3.5=a_{0}+a_{1}(9.20)+a_{2}(9.20)^{2}+a_{3}(9.20)^{3}+a_{4}(9.20)^{4}+a_{5}(9.20)^{5} \\
y(10.60)=5.0=a_{0}+a_{1}(10.60)+a_{2}(10.60)^{2}+a_{3}(10.60)^{3}+a_{4}(10.60)^{4}+a_{5}(10.60)^{5}
\end{gathered}
$$

Fifth Order Interpolation (contd)

Writing the six equations in matrix form, we have

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
1 & 2.00 & 4.00 & 8.00 & 16.00 & 32 \\
1 & 4.25 & 18.063 & 76.766 & 326.25 & 1386.6 \\
1 & 5.25 & 27.563 & 144.70 & 759.69 & 3988.4 \\
1 & 7.81 & 60.996 & 476.38 & 3720.5 & 29057 \\
1 & 9.20 & 84.640 & 778.69 & 7163.9 & 65908 \\
1 & 10.6 & 112.36 & 1191.0 & 12625 & 133820
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right]=\left[\begin{array}{l}
7.2 \\
7.1 \\
6.0 \\
5.0 \\
3.5 \\
5.0
\end{array}\right]} \\
& a_{0}=-30.898 \quad a_{1}=41.344 \quad a_{2}=-15.855 \\
& a_{3}=2.7862 \quad a_{4}=-0.23091 \quad a_{5}=0.0072923
\end{aligned}
$$

$$
y(x)=-30.898+41.344 x-15.855 x^{2}+2.7862 x^{3}-0.23091 x^{4}+0.0072923 x^{5}, 2 \leq x \leq 10.6
$$

Fifth Order Interpolation (contd)

$$
y(x)=-30.898+41.344 x-15.855 x^{2}+2.7862 x^{3}-0.23091 x^{4}+0.0072923 x^{5}, 2 \leq x \leq 10.6
$$

Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit
http://numericalmethods.eng.usf.edu/topics/direct met hod.html

THE END

http:// numericalmethods.eng.usf.edu

