Direct Method of Interpolation

Computer Engineering Majors

Authors: Autar Kaw, Jai Paul

http://numericalmethods.eng.usf.edu

Transforming Numerical Methods Education for STEM Undergraduates Direct Method of Interpolation

What is Interpolation ?

Given (x_0, y_0) , (x_1, y_1) , (x_n, y_n) , find the value of 'y' at a value of 'x' that is not given.

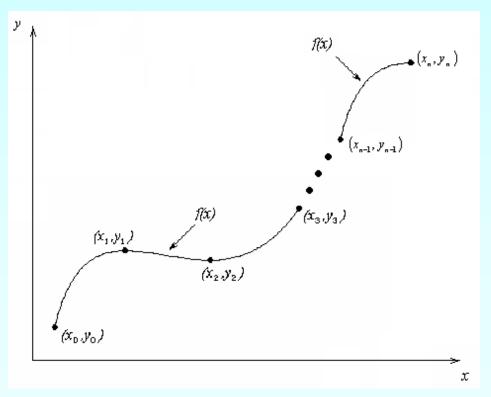


Figure 1 Interpolation of discrete.

Interpolants

Polynomials are the most common choice of interpolants because they are easy to:

Evaluate
Differentiate, and
Integrate

Direct Method

Given 'n+1' data points (x_0, y_0) , (x_1, y_1) ,..... (x_n, y_n) , pass a polynomial of order 'n' through the data as given below:

$$y = a_0 + a_1 x + \dots + a_n x^n$$
.

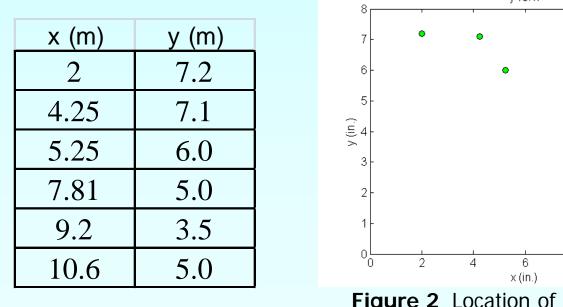
where a_0 , a_1 ,..., a_n are real constants.

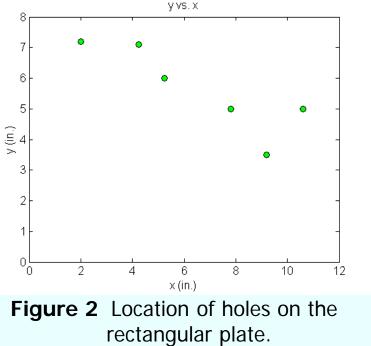
- Set up 'n+1' equations to find 'n+1' constants.
- To find the value 'y' at a given value of 'x', simply substitute the value of 'x' in the above polynomial.

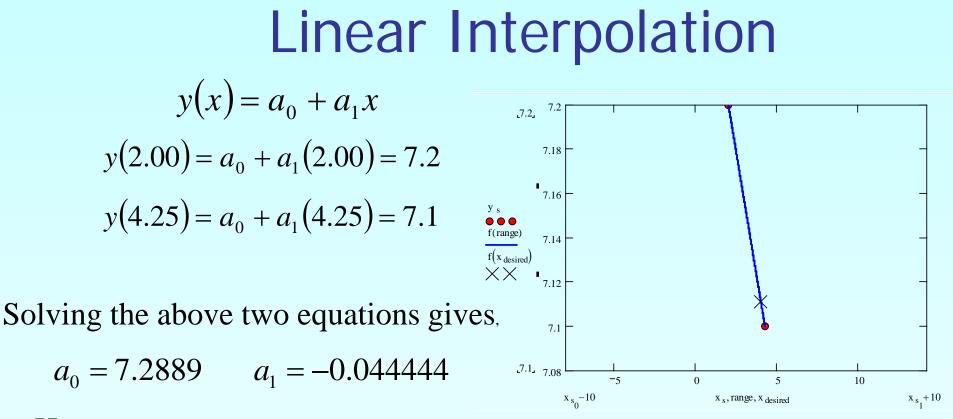
Example

A robot arm with a rapid laser scanner is doing a quick quality check on holes drilled in a rectangular plate. The hole centers in the plate that describe the path the arm needs to take are given below.

If the laser is traversing from x = 2 to x = 4.25 in a linear path, find the value of y at x = 4 using the direct method for linear interpolation.







Hence

$$y(x) = 7.2889 - 0.044444x, 2.00 \le x \le 4.25$$

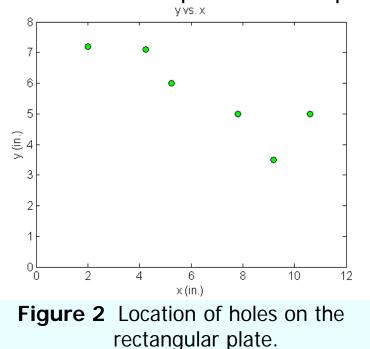
 $y(4.00) = 7.2889 - 0.044444(4.00) = 7.1111$ in.

Example

A robot arm with a rapid laser scanner is doing a quick quality check on holes drilled in a rectangular plate. The hole centers in the plate that describe the path the arm needs to take are given below.

If the laser is traversing from x = 2 to x = 4.25 in a linear path, find the value of y at x = 4 using the direct method for quadratic interpolation.

x (m)	y (m)
2	7.2
4.25	7.1
5.25	6.0
7.81	5.0
9.2	3.5
10.6	5.0



Quadratic Interpolation

$$y(x) = a_0 + a_1 x + a_2 x^2$$

 $y(2.00) = a_0 + a_1(2.00) + a_2(2.00)^2 = 7.2$
 $y(4.25) = a_0 + a_1(4.25) + a_2(4.25)^2 = 7.1$
 $y(5.25) = a_0 + a_1(5.25) + a_2(5.25)^2 = 6.0$
Solving the above three equations gives

 $a_0 = 4.5282$ $a_1 = 1.9855$ $a_2 = -0.32479$

D

Quadratic Interpolation (contd)

$$y(x) = 4.5282 + 1.9855x - 0.32479x^2, \ 2.00 \le x \le 5.25$$

 $y(4.00) = 4.5282 + 1.9855(4.00) - 0.32479(4.00)^2$

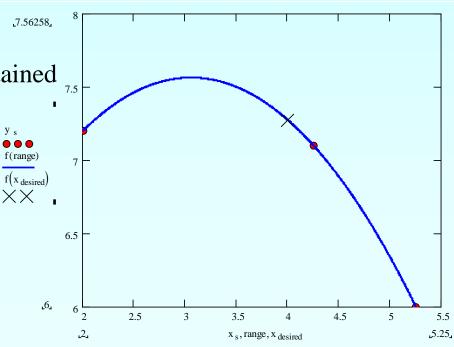
= 7.2735 *in*.

The absolute relative approximate error $|\epsilon_a|$ obtained $\frac{1}{2}$

between first and second order polynomial is

$$\epsilon_a = \left| \frac{7.2735 - 7.1111}{7.2735} \right| \times 100$$

$$= 2.2327\%$$



Comparison Table

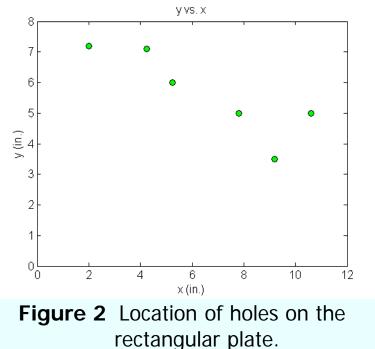
Order of Polynomial	1	2
Location (in.)	7.1111	7.2735
Absolute Relative Approximate Error		2.2327%

Example

A robot arm with a rapid laser scanner is doing a quick quality check on holes drilled in a rectangular plate. The hole centers in the plate that describe the path the arm needs to take are given below.

If the laser is traversing from x = 2 to x = 4.25 in a linear path, find the value of y at x = 4 using the direct method using a fifth order polynomial.

x (m)	y (m)		
2	7.2		
4.25	7.1		
5.25	6.0		
7.81	5.0		
9.2	3.5		
10.6	5.0		



Fifth Order Interpolation

$$y(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5$$

$$y(2.00) = 7.2 = a_0 + a_1(2.00) + a_2(2.00)^2 + a_3(2.00)^3 + a_4(2.00)^4 + a_5(2.00)^5$$

$$y(4.25) = 7.1 = a_0 + a_1(4.25) + a_2(4.25)^2 + a_3(4.25)^3 + a_4(4.25)^4 + a_5(4.25)^5$$

$$y(5.25) = 6.0 = a_0 + a_1(5.25) + a_2(5.25)^2 + a_3(5.25)^3 + a_4(5.25)^4 + a_5(5.25)^5$$

$$y(7.81) = 5.0 = a_0 + a_1(7.81) + a_2(7.81)^2 + a_3(7.81)^3 + a_4(7.81)^4 + a_5(7.81)^5$$

$$y(9.20) = 3.5 = a_0 + a_1(9.20) + a_2(9.20)^2 + a_3(9.20)^3 + a_4(9.20)^4 + a_5(9.20)^5$$

$$y(10.60) = 5.0 = a_0 + a_1(10.60) + a_2(10.60)^2 + a_3(10.60)^3 + a_4(10.60)^4 + a_5(10.60)^5$$

Fifth Order Interpolation (contd)

Writing the six equations in matrix form, we have

[1	2.00	4.00	8.00	16.00	32	$\begin{bmatrix} a_0 \end{bmatrix}$		[7.2]
1	4.25	18.063	76.766	326.25	1386.6	a_1		7.1
1	5.25	27.563	144.70	759.69	3988.4	a_2		6.0
1	7.81	60.996	476.38	3720.5	29057	a_3	=	5.0
1	9.20	84.640	778.69	7163.9	65908	a_4		3.5
1	10.6	112.36	1191.0	12625	32 1386.6 3988.4 29057 65908 133820	a_5		5.0

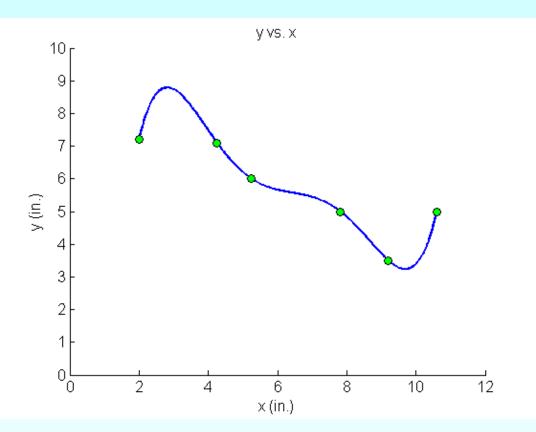
 $a_0 = -30.898$ $a_1 = 41.344$ $a_2 = -15.855$

 $a_3 = 2.7862$ $a_4 = -0.23091 a_5 = 0.0072923$

 $y(x) = -30.898 + 41.344x - 15.855x^{2} + 2.7862x^{3} - 0.23091x^{4} + 0.0072923x^{5}, 2 \le x \le 10.6$

Fifth Order Interpolation (contd)

 $y(x) = -30.898 + 41.344x - 15.855x^{2} + 2.7862x^{3} - 0.23091x^{4} + 0.0072923x^{5}, 2 \le x \le 10.6$



Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

http://numericalmethods.eng.usf.edu/topics/direct_met hod.html

THE END