07.00D.2
                                                                                                            Chapter 07.00D
Physical Problem for Integration:Computer Engineering                                           07.00D.3

Chapter 07.00D 
Physical Problem for Integration

Computer Engineering

Problem
Human vision has the remarkable ability to infer 3D shapes from 2D images.  When we look at 2D photographs or TV we do not see them as 2D shapes, rather as 3D entities with surfaces and volumes.  Perception research has unraveled many of the cues that are used by us.  The intriguing question is: can we replicate some of these abilities on a computer?  To this end, in this assignment we are going to look at one way to engineer a solution to the 3D shape from 2D images problem.  Apart from the pure fun of solving a new problem, there are many practical applications of this technology such as in automated inspection of machine parts, inference of obstructing surfaces for robot navigation, and even in robot-assisted surgery. 
            Image is a collection of gray level values at a set of predetermined sites known as pixels, arranged in an array.  These gray level values are also known as image intensities.  The registered intensity at an image pixel is dependent on a number of factors such as the lighting conditions, surface orientation, and surface material properties.  The nature of lighting and its placement can drastically affect the appearance of a scene.  In another module on simultaneous linear equations, we saw how to infer the surface normal vectors for each point in the scene, given three images of the scene taken with three different light sources.  In Figure 1 we see vector field that we have inferred form the three images.  In this module, we will see how we can integrate this vector field to arrive at a surface. 

Physics of the Problem

To be able to reconstruct the shape of the underlying surface, we have to first understand the how the surface normal is related to the underlying surface.  Figure 2 shows the schematic of the camera centered coordinate axis that we can use to formulate the problem.  The 
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-direction is away from the camera towards the scene.  Let the scene surface be parameterized by the function.
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The equation of the local surface normal can be related to this function as follows.  If we find two tangents on the surface then the cross product of these tangents will give us the surface normal.  Two tangents along the 
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 and 
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-directions can easily be specified in terms of the derivatives along these directions.  Figure 2 shows the underlying geometry that can be used to arrive at these equations.
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	Figure 1 The first three images are of a sphere taken with three different light source positions.  The right image is a vector field representation of the surface normal vectors estimated from these three images.  Can you compute the underlying surface representation from this vector field?
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Figure 2   Relationship between surface tangent at a point to underlying surface equation.  On the left is a simplified representation of the imaging geometry.  The surface is assumed to be far away from the camera.  On the right is a schematic of the local geometry on the scene surface.

The local surface normal, 
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, will be along the direction of the cross product of 
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Note that there is 1800 ambiguity in the specification of the surface normal.  We need the negative sign because we want the surface normal to be oriented towards the camera and the 
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-axis is pointed away from the camera.  Also, note that the cross product gives as a vector along the surface normal.  We have to normalize the vector to arrive at the surface normal.  For notational ease let 
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Then,
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We see that the surface normal can be expressed in terms of the derivatives of the underlying surface.  From this equation, we can express the local surface derivatives in terms of ratios of the surface normal components.
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	Figure 3  Integration paths to arrive at the depth surface value for the point marked by the red dot.



The black lines denote possible paths over which the x-partial derivative can be integrated.  And, the purple lines denote possible paths to integrate the y-partial derivative.  The paths are shown overlaid on the input vector field representing the partial derivatives of the surface along x and y directions.

Solution 
We arrive at the final surface equation by integration these partial derivatives.  Since we have a 2D field, we can perform the integration along many paths.  The simplest paths are along the 
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) axis.
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One could also start from the right edge of the image and integrate the partial derivative with respect to 
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 towards the left edge, or start from the bottom of the image and integrate the 
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-partial derivative towards the top.  These directions are depicted in Figure 3.  The equivalent integrals are as follows.  The image is assumed to N pixels by M pixels in size and the negative sign arises because of the direction of the integration. 


[image: image30.wmf]ò

¶

¶

-

=

u

N

dx

x

v

x

g

v

u

g

)

,

(

)

,

(

          or           
[image: image31.wmf]ò

¶

¶

-

=

v

M

dy

y

y

u

g

v

u

g

)

,

(

)

,

(


Ideally, all the four integrals should result in the same value, however, for noisy, real world data they will never be the same.  One solution is to take the average of these four integrals as the final value.  Note that these integrals have to be evaluated for each location 
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 in the image to arrive at the full surface.

Worked Out Example 

Consider the problem of estimating the surface height along the line passing through the center of the sphere in Figure 1.  Figure 4 (a) shows the input estimates for the partial derivatives along the x direction, 
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 for the sphere along this line.  The raw data for this plot is given below. 

	x
	g

	1.00000
	0.00000

	2.00000
	0.00000

	3.00000
	0.00000

	4.00000
	0.00000

	5.00000
	0.00000

	6.00000
	0.00000

	7.00000
	0.00000

	8.00000
	0.00000

	9.00000
	0.00000

	10.00000
	0.00000

	11.00000
	0.00000

	12.00000
	0.00000

	13.00000
	0.00000

	14.00000
	0.00000

	15.00000
	0.00000

	16.00000
	0.00000

	17.00000
	0.00000

	18.00000
	0.00000

	19.00000
	0.00000

	20.00000
	0.00000

	21.00000
	0.00000

	22.00000
	0.00000

	23.00000
	0.00000

	24.00000
	0.00000

	25.00000
	0.00000

	26.00000
	0.00000

	27.00000
	0.00000

	28.00000
	0.00000

	29.00000
	0.00000

	30.00000
	5.42857

	31.00000
	4.40000

	32.00000
	3.82362

	33.00000
	3.23097

	34.00000
	2.74844

	35.00000
	2.43579

	36.00000
	2.19293

	37.00000
	2.04677

	38.00000
	1.91851

	39.00000
	1.88649

	40.00000
	1.62019

	41.00000
	1.55007

	42.00000
	1.47428

	43.00000
	1.44755

	44.00000
	1.36134

	45.00000
	1.28187

	46.00000
	1.14868

	47.00000
	1.15089

	48.00000
	1.14027

	49.00000
	1.05379

	50.00000
	0.98459

	51.00000
	1.00329

	52.00000
	0.96249

	53.00000
	0.90161

	54.00000
	0.88597

	55.00000
	0.83243

	56.00000
	0.78901

	57.00000
	0.80149

	58.00000
	0.74730

	59.00000
	0.73934

	60.00000
	0.70364

	61.00000
	0.67288

	62.00000
	0.66161

	63.00000
	0.62773

	64.00000
	0.61402

	65.00000
	0.60783

	66.00000
	0.58271

	67.00000
	0.55106

	68.00000
	0.52999

	69.00000
	0.50641

	70.00000
	0.50146

	71.00000
	0.46053

	72.00000
	0.45829

	73.00000
	0.43148

	74.00000
	0.41627

	75.00000
	0.39025

	76.00000
	0.38186

	77.00000
	0.35635

	78.00000
	0.34187

	79.00000
	0.32304

	80.00000
	0.31064

	81.00000
	0.27967

	82.00000
	0.27367

	83.00000
	0.26137

	84.00000
	0.24340

	85.00000
	0.23128

	86.00000
	0.20758

	87.00000
	0.19566

	88.00000
	0.19566

	89.00000
	0.17807

	90.00000
	0.16632

	91.00000
	0.14409

	92.00000
	0.12686

	93.00000
	0.11039

	94.00000
	0.10481

	95.00000
	0.08266

	96.00000
	0.06623

	97.00000
	0.04945

	98.00000
	0.04383

	99.00000
	0.03309

	100.00000
	0.00038

	101.00000
	-0.00516

	102.00000
	-0.02149

	103.00000
	-0.03232

	104.00000
	-0.04317

	105.00000
	-0.05421

	106.00000
	-0.06513

	107.00000
	-0.09250

	108.00000
	-0.09820

	109.00000
	-0.11468

	110.00000
	-0.12011

	111.00000
	-0.13697

	112.00000
	-0.14808

	113.00000
	-0.18176

	114.00000
	-0.18776

	115.00000
	-0.19904

	116.00000
	-0.20511

	117.00000
	-0.22784

	118.00000
	-0.25084

	119.00000
	-0.26862

	120.00000
	-0.26960

	121.00000
	-0.30463

	122.00000
	-0.30577

	123.00000
	-0.33591

	124.00000
	-0.33720

	125.00000
	-0.35061

	126.00000
	-0.37626

	127.00000
	-0.38823

	128.00000
	-0.40213

	129.00000
	-0.42330

	130.00000
	-0.44994

	131.00000
	-0.47173

	132.00000
	-0.47897

	133.00000
	-0.50129

	134.00000
	-0.54231

	135.00000
	-0.54480

	136.00000
	-0.57621

	137.00000
	-0.56790

	138.00000
	-0.61925

	139.00000
	-0.63884

	140.00000
	-0.65569

	141.00000
	-0.68145

	142.00000
	-0.73088

	143.00000
	-0.75263

	144.00000
	-0.76928

	145.00000
	-0.79030

	146.00000
	-0.80970

	147.00000
	-0.81065

	148.00000
	-0.88367

	149.00000
	-0.89782

	150.00000
	-0.92400

	151.00000
	-1.00067

	152.00000
	-1.03536

	153.00000
	-1.08947

	154.00000
	-1.09584

	155.00000
	-1.20465

	156.00000
	-1.22123

	157.00000
	-1.26090

	158.00000
	-1.30056

	159.00000
	-1.33557

	160.00000
	-1.49718

	161.00000
	-1.53483

	162.00000
	-1.70123

	163.00000
	-1.69167

	164.00000
	-1.89507

	165.00000
	-2.06525

	166.00000
	-2.24788

	167.00000
	-2.45874

	168.00000
	-2.80478

	169.00000
	-3.22446

	170.00000
	-3.86839

	171.00000
	-4.00000

	172.00000
	-4.00000

	173.00000
	0.00000

	174.00000
	0.00000

	175.00000
	0.00000

	176.00000
	0.00000

	177.00000
	0.00000

	178.00000
	0.00000

	179.00000
	0.00000

	180.00000
	0.00000

	181.00000
	0.00000

	182.00000
	0.00000

	183.00000
	0.00000

	184.00000
	0.00000

	185.00000
	0.00000

	186.00000
	0.00000

	187.00000
	0.00000

	188.00000
	0.00000

	189.00000
	0.00000

	190.00000
	0.00000

	191.00000
	0.00000

	192.00000
	0.00000

	193.00000
	0.00000

	194.00000
	0.00000

	195.00000
	0.00000

	196.00000
	0.00000

	197.00000
	0.00000

	198.00000
	0.00000

	199.00000
	0.00000

	200.00000
	0.00000


This data needs to be numerically integrated to arrive at height values.  Figure 4 (b) shows the plot of the surface height, as computed by integrating starting from left and from right.  We used the trapezoidal integration method.  Notice the small discrepancy, which is due to real world data noise.  The overall shape does look circular, which should serve as a sanity check on the calculations. 
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	                Figure 4(a)
	                            Figure 4(b)


Figure 4(a) The plot of the estimates for the partial derivatives along the x direction, 
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 for the sphere along a horizontal line passing through the middle of the sphere.  Figure 4(b) Plot of the integrated value at each point along the horizontal.  The blue plot corresponds to integrating from left to right and the red plot corresponds to integrating from right to left.

If we repeat the above process along the vertical direction (along image columns), then we will arrive at two more estimates for the middle point of the sphere, which can be averaged to arrive at one estimate.  If we repeat this for each point on the sphere, not just the middle, then we will arrive at the surface representation for the full sphere.  Figure 5 shows the averaged estimate of the sphere as estimated from the input vector field.  Note the spherical nature of the final estimate.
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	Figure 5 Estimated surface height for the vector field in Figure 1(c) as computed by averaging the estimates of the integrals along four directions, for each point.


QUESTIONS
1. Write code to recover the surface height at each point in the image given the vector field.

2. For any point on the sphere, specify 25 different paths along which you can integrate.

3. Study how the roughness of the estimated surface changes with number of path integrals that are averaged.
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