Differentiation-Discrete Functions

Electric Engineering Majors

Authors: Autar Kaw, Sri Harsha Garapati

http://numericalmethods.eng.usf.edu
Transforming Numerical Methods Education for STEM Undergraduates

Differentiation -Discrete Functions

Forward Difference Approximation

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

For a finite ' Δx '

$$
f^{\prime}(x) \approx \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

Graphical Representation Of Forward Difference Approximation

Figure 1 Graphical Representation of forward difference approximation of first derivative.

Example 1

To increase the reliability and life of a switch, one needs to turn the switch off as close to zero crossing as possible. To find this time of zero crossing, the value of $E(t) / E^{\prime}(t)$ is to be found at all times given in Table 1, where $E(t)$ is the voltage and t is the time. To keep the problem simple, you are asked to find the approximate value of $E(t) / E^{\prime}(t)$ at $t=10$.

See Table 1 for voltage as a function of time data.
Use Forward Divided Difference approximation of the first derivative to calculate $E(t) / E^{\prime}(t)$ at $t=10$. Use a step size of $\Delta t=1$.

Example 1 Cont.

Table 1 Voltage as a function of time.

Time, $t(\mathrm{~s})$	Voltage, $E(t)(\mathrm{V})$	Time, $t(\mathrm{~s})$	Voltage, $E(t)(\mathrm{V})$
1	0.62161		13
2	0.36236	-0.21078	
3	0.070737	14	0.087499
4	-0.22720	15	0.37798
5	-0.50485	16	0.63469
6	-0.73739	17	0.83471
7	-0.90407	18	0.96017
8	-0.98999	19	0.99986
9	-0.98748	20	0.95023
10	-0.89676	21	0.81573
11	-0.72593	22	0.60835
12	-0.49026	23	0.34664

Example 1 Cont.

Solution

$$
\begin{aligned}
E^{\prime}\left(t_{i}\right) & \approx \frac{E\left(t_{i+1}\right)-E\left(t_{i}\right)}{\Delta t} \\
t_{i} & =10 \\
t_{i+1} & =11 \\
\Delta t & =t_{i+1}-t_{i} \\
& =11-10 \\
& =1 \\
E^{\prime}(10) & \approx \frac{E(11)-E(10)}{\Delta t} \\
& \approx \frac{-0.72593-(-0.89676)}{1} \\
& \approx 0.17083 \mathrm{~V} / \mathrm{s}
\end{aligned}
$$

Example 1 Cont.

$$
\begin{aligned}
\frac{E(10)}{E^{\prime}(10)} & \approx \frac{-0.89676}{0.17083} \\
& \approx-5.2495 \mathrm{~s}
\end{aligned}
$$

Direct Fit Polynomials

In this method, given ' $n+1$ ' data points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ one can fit a $n^{\text {th }}$ order polynomial given by

$$
P_{n}(x)=a_{0}+a_{1} x+\ldots \ldots+a_{n-1} x^{n-1}+a_{n} x^{n}
$$

To find the first derivative,
$P_{n}^{\prime}(x)=\frac{d P_{n}(x)}{d x}=a_{1}+2 a_{2} x+\ldots \ldots+(n-1) a_{n-1} x^{n-2}+n a_{n} x^{n-1}$
Similarly other derivatives can be found.

Example 2-Direct Fit Polynomials

To increase the reliability and life of a switch, one needs to turn the switch off as close to zero crossing as possible. To find this time of zero crossing, the value of $E(t) / E^{\prime}(t)$ is to be found at all times given in Table 2, where $E(t)$ is the voltage and t is the time. To keep the problem simple, you are asked to find the approximate value of $E(t) / E^{\prime}(t)$ at $t=10$.

See Table 2 for voltage as a function of time data.
Using the third order polynomial interpolant for Voltage, find the value of $E(t) / E^{\prime}(t)$ at $t=10$.

Example 2-Direct Fit Polynomials cont.

Table 2 Voltage as a function of time.

Time, $t(\mathrm{~s})$	Voltage, $E(t)(\mathrm{V})$	Time, $t(\mathrm{~s})$	Voltage, $E(t)(\mathrm{V})$
1	0.62161		13
2	0.36236		14
0.21078			
3	0.070737		15
4	-0.22720		16
5	-0.50485		17
6	-0.73739	0.63469	
7	-0.90407	18	0.83471
8	-0.98999	19	0.96017
9	-0.98748	20	0.95023
10	-0.89676	21	0.81573
11	-0.72593	22	0.60835
12	-0.49026	23	0.34664

Example 2-Direct Fit Polynomials cont.

Solution

For the third order polynomial (also called cubic interpolation), we choose the velocity given by

$$
E(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}
$$

Since we want to find the voltage at $t=10$, and we are using a third order polynomial, we need to choose the four points closest to $t=10$ and that also bracket $t=10$ to evaluate it.

The four points are $t_{0}=8, t_{1}=9, t_{2}=10$ and $t_{3}=11$.

$$
\begin{aligned}
& t_{o}=8, E\left(t_{o}\right)=-0.98999 \\
& t_{1}=9, E\left(t_{1}\right)=-0.98748 \\
& t_{2}=10, E\left(t_{2}\right)=-0.89676 \\
& t_{3}=11, E\left(t_{3}\right)=-0.72593
\end{aligned}
$$

Example 2-Direct Fit Polynomials cont.

such that

$$
\begin{aligned}
& E(8)=-0.98999=a_{0}+a_{1}(8)+a_{2}(8)^{2}+a_{3}(8)^{3} \\
& E(9)=-0.98748=a_{0}+a_{1}(9)+a_{2}(9)^{2}+a_{3}(9)^{3} \\
& E(10)=-0.89676=a_{0}+a_{1}(10)+a_{2}(10)^{2}+a_{3}(10)^{3} \\
& E(11)=-0.72593=a_{0}+a_{1}(11)+a_{2}(11)^{2}+a_{3}(11)^{3}
\end{aligned}
$$

Writing the four equations in matrix form, we have

$$
\left[\begin{array}{cccc}
1 & 8 & 64 & 512 \\
1 & 9 & 81 & 729 \\
1 & 10 & 100 & 1000 \\
1 & 11 & 121 & 1331
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
-0.98999 \\
-0.98748 \\
-0.89676 \\
-0.72593
\end{array}\right]
$$

Example 2-Direct Fit Polynomials cont.

Solving the above four equations gives

$$
\begin{aligned}
a_{0} & =3.1382 \\
a_{1} & =-1.0742 \\
a_{2} & =0.080582 \\
a_{3} & =-0.0013510
\end{aligned}
$$

Hence

$$
\begin{aligned}
E(t) & =a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3} \\
& =3.1382-1.0742 t+0.080582 t^{2}-0.0013510 t^{3}, \quad 8 \leq t \leq 11
\end{aligned}
$$

Example 2-Direct Fit Polynomials cont.

Figure 2 Graph of voltage of the switch vs. time.

Example 2-Direct Fit Polynomials cont.

The derivative of voltage at $\mathrm{t}=10$ is given by

$$
E^{\prime}(10)=\left.\frac{d}{d t} E(t)\right|_{t=10}
$$

Given that

$$
\begin{aligned}
E(t) & =3.1382-1.0742 t+0.080582 t^{2}-0.0013510 t^{3}, 8 \leq t \leq 11 \\
E^{\prime}(t) & =\frac{d}{d t} E(t) \\
& =\frac{d}{d t}\left(3.13812-1.0742 t+0.080582 t^{2}-0.0013510 t^{3}\right) \\
& =-1.0742+0.16116 t-0.0040530 t^{2}, \quad 8 \leq t \leq 11
\end{aligned}
$$

Example 2-Direct Fit Polynomials cont.

$$
\begin{aligned}
E^{\prime}(10) & =-1.0742+0.16116 t-0.0040530 t^{2} \\
& =0.13210 \mathrm{~V} / \mathrm{s} \\
\frac{E(10)}{E^{\prime}(10)} & =\frac{-0.89676}{0.13210} \\
& =-6.7872 \mathrm{~s}
\end{aligned}
$$

Lagrange Polynomial

In this method, given $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, one can fit a $(n-1)^{h}$ order Lagrangian polynomial given by

$$
f_{n}(x)=\sum_{i=0}^{n} L_{i}(x) f\left(x_{i}\right)
$$

where ' n ' in $f_{n}(x)$ stands for the $n^{\text {th }}$ order polynomial that approximates the function $y=f(x)$ given at $(n+1)$ data points as $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots \ldots,\left(x_{n-1}, y_{n-1}\right),\left(x_{n}, y_{n}\right)$, and

$$
L_{i}(x)=\prod_{\substack{j=0 \\ j \neq i}}^{n} \frac{x-x_{j}}{x_{i}-x_{j}}
$$

$L_{i}(x)$ a weighting function that includes a product of $(n-1)$ terms with terms of $j=i$ omitted.

Lagrange Polynomial Cont.

Then to find the first derivative, one can differentiate $f_{n}(x)$ once, and so on for other derivatives.

For example, the second order Lagrange polynomial passing through
$\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ is
$f_{2}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} f\left(x_{0}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} f\left(x_{1}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} f\left(x_{2}\right)$
Differentiating equation (2) gives

\&on?

$$
f_{2}^{\prime}(x)=\frac{2 x-\left(x_{1}+x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} f\left(x_{0}\right)+\frac{2 x-\left(x_{0}+x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} f\left(x_{1}\right)+\frac{2 x-\left(x_{0}+x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} f\left(x_{2}\right)
$$

Differentiating again would give the second derivative as

$$
f_{2}^{\prime \prime}(x)=\frac{2}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} f\left(x_{0}\right)+\frac{2}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} f\left(x_{1}\right)+\frac{2}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} f\left(x_{2}\right)
$$

Example 3

To increase the reliability and life of a switch, one needs to turn the switch off as close to zero crossing as possible. To find this time of zero crossing, the value of $E(t) / E^{\prime}(t)$ is to be found at all times given in Table 3, where $E(t)$ is the voltage and t is the time. To keep the problem simple, you are asked to find the approximate value of $E(t) / E^{\prime}(t)$ at $t=10$.

See Table 3 for voltage as a function of time data.
Use the second order Lagrangian polynomial interpolation to calculate the value of $E(t) / E^{\prime}(t)$ at $t=10$.

Example 3 Cont.

Table 2 Voltage as a function of time.

Time, $t(\mathrm{~s})$	Voltage, $E(t)(\mathrm{V})$	Time, $t(\mathrm{~s})$	Voltage, $E(t)(\mathrm{V})$
1	0.62161		13
2	0.36236	-0.21078	
3	0.070737		15
4	-0.22720		16
5	-0.50485	17	0.37799
6	-0.73739	18	0.83469
7	-0.90407		19
8	-0.98999	0.9917	
9	-0.98748	20	0.95023
10	-0.89676	21	0.81573
11	-0.72593	22	0.60835
12	-0.49026	23	0.34664

Example 3 Cont.

Solution:

For second order Lagrangian polynomial interpolation, we choose the voltage given by

$$
E(t)=\left(\frac{t-t_{1}}{t_{0}-t_{1}}\right)\left(\frac{t-t_{2}}{t_{0}-t_{2}}\right) E\left(t_{0}\right)+\left(\frac{t-t_{0}}{t_{1}-t_{0}}\right)\left(\frac{t-t_{2}}{t_{1}-t_{2}}\right) E\left(t_{1}\right)+\left(\frac{t-t_{0}}{t_{2}-t_{0}}\right)\left(\frac{t-t_{1}}{t_{2}-t_{1}}\right) E\left(t_{2}\right)
$$

Since we want to find the voltage at $t=10$, and we are using a second order Lagrangian polynomial, we need to choose the three points closest to $t=10$ that also bracket $t=10$ to evaluate it.
The three points are $t_{0}=9, t_{1}=10$, and $t_{2}=11$.
Differentiating the above equation gives

$$
E^{\prime}(t)=\frac{2 t-\left(t_{1}+t_{2}\right)}{\left(t_{0}-t_{1}\right)\left(t_{0}-t_{2}\right)} E\left(t_{0}\right)+\frac{2 t-\left(t_{0}+t_{2}\right)}{\left(t_{1}-t_{0}\right)\left(t_{1}-t_{2}\right)} E\left(t_{1}\right)+\frac{2 t-\left(t_{0}+t_{1}\right)}{\left(t_{2}-t_{0}\right)\left(t_{2}-t_{1}\right)} E\left(t_{2}\right)
$$

Example 3 Cont.

Hence

$$
\begin{aligned}
E^{\prime}(10) & =\frac{2(10)-(10+11)}{(9-10)(9-11)}(-0.98748)+\frac{2(10)-(9+11)}{(10-9)(10-11)}(-0.89676)+\frac{2(10)-(9+10)}{(11-9)(11-10)}(-0.72593) \\
& =-0.5(-0.98748)+0(-0.89676)+0.5(-0.72593) \\
& =0.13077 \mathrm{~V} / \mathrm{s} \\
\frac{E(10)}{E^{\prime}(10)} & =\frac{-0.89676}{0.13077} \\
& =-6.8573 \mathrm{~s}
\end{aligned}
$$

Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit
http://numericalmethods.eng.usf.edu/topics/discrete_02 dif.html

THE END

http:// numericalmethods.eng.usf.edu

