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Forward Difference 
Approximation
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Figure 1 Graphical Representation of forward difference approximation of first derivative.
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Example 1

To increase the reliability and life of a switch, one needs to turn the switch off 
as close to zero crossing as possible.  To find this time of zero crossing, the 
value of is to be found at all times given in Table 1, where

is the voltage and is the time.  To keep the problem simple, you are 
asked to find the approximate value of   at           .

See Table 1 for voltage as a function of time data.

Use Forward Divided Difference approximation of the first derivative to calculate
at .  Use a step size of            . 1=∆t
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Example 1 Cont.

Time, Voltage, Time, Voltage,

1 0.62161 13 −0.21078

2 0.36236 14 0.087499

3 0.070737 15 0.37798

4 −0.22720 16 0.63469

5 −0.50485 17 0.83471

6 −0.73739 18 0.96017

7 −0.90407 19 0.99986

8 −0.98999 20 0.95023

9 −0.98748 21 0.81573

10 −0.89676 22 0.60835

11 −0.72593 23 0.34664

12 −0.49026 24 0.053955

Table 1 Voltage as a function of time.

( ) ( )V  tE( )s   t ( )s   t ( ) ( )V  tE
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Example 1 Cont.
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Example 1 Cont.
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Direct Fit Polynomials
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In this method, given data points

one can fit a order polynomial given by

To find the first derivative,

Similarly other derivatives can be found.
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Example 2-Direct Fit Polynomials

To increase the reliability and life of a switch, one needs to turn the switch off 
as close to zero crossing as possible.  To find this time of zero crossing, the 
value of is to be found at all times given in Table 2, where

is the voltage and is the time.  To keep the problem simple, you are 
asked to find the approximate value of   at           .

See Table 2 for voltage as a function of time data.

Using the third order polynomial interpolant for Voltage, find the value of
at  .  
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Example 2-Direct Fit Polynomials cont.

Time, Voltage, Time, Voltage,

1 0.62161 13 −0.21078

2 0.36236 14 0.087499

3 0.070737 15 0.37798

4 −0.22720 16 0.63469

5 −0.50485 17 0.83471

6 −0.73739 18 0.96017

7 −0.90407 19 0.99986

8 −0.98999 20 0.95023

9 −0.98748 21 0.81573

10 −0.89676 22 0.60835

11 −0.72593 23 0.34664

12 −0.49026 24 0.053955

Table 2 Voltage as a function of time.

( ) ( )V  tE( )s   t ( )s   t ( ) ( )V  tE
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Example 2-Direct Fit Polynomials cont.

For the third order polynomial (also called cubic interpolation), we choose the velocity given by 

( ) 3
3

2
210 tatataatE +++=

Since we want to find the voltage at           , and we are using a third order polynomial, we need  

to choose the four points closest to 10=t and that also bracket to evaluate it. 

The four points are           ,             ,              and               .

( ) 98999.0,8 −== oo tEt

( ) 98748.0,9 11 −== tEt

( ) 89676.0,10 22 −== tEt

( ) 72593.0,11 33 −== tEt

Solution
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113 =t102 =t91 =t
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Example 2-Direct Fit Polynomials cont.

such that
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Example 2-Direct Fit Polynomials cont.
Solving the above four equations gives

3.13820 =a
1.07421 −=a

0.0805822 =a
0.00135103 −=a

Hence

( ) 3
3

2
210 tatataatE +++=

118,0013510.0080582.00742.11382.3 32 ≤≤−+−= tttt
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Example 2-Direct Fit Polynomials cont.

Figure 2 Graph of voltage of the switch vs. time.
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Example 2-Direct Fit Polynomials cont.
The derivative of voltage at t=10 is given by

( ) ( )
10

' 10
=

=
t

tE
dt
dE

Given that

( ) 118  ,0013510.0080582.00742.11382.3 32 ≤≤−+−= tttttE

,

( ) ( )

( )
118,0.0040530-0.161160742.1  

0013510.0080582.00742.113812.3  

   

2

32

'

≤≤+−=

−+−=

=

ttt

ttt
dt
d

tE
dt
dtE



http://numericalmethods.eng.usf.edu17

Example 2-Direct Fit Polynomials cont.
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Lagrange Polynomial
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Then to find the first derivative, one can differentiate ( )xfn

for other derivatives.

For example, the second order Lagrange polynomial passing through 

( ) ( ) ( )221100 ,,,,, yxyxyx is 
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Differentiating equation (2) gives

once, and so on

Lagrange Polynomial Cont.
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Differentiating again would give the second derivative as

Lagrange Polynomial Cont.
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Example 3
To increase the reliability and life of a switch, one needs to turn the switch off 
as close to zero crossing as possible.  To find this time of zero crossing, the 
value of is to be found at all times given in Table 3, where

is the voltage and is the time.  To keep the problem simple, you are 
asked to find the approximate value of   at           .

See Table 3 for voltage as a function of time data.

Use the second order Lagrangian polynomial interpolation to calculate the value 
of               at  .  

( ) ( )tEtE ′
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Example 3 Cont.
Time, Voltage, Time, Voltage,

1 0.62161 13 −0.21078

2 0.36236 14 0.087499

3 0.070737 15 0.37798

4 −0.22720 16 0.63469

5 −0.50485 17 0.83471

6 −0.73739 18 0.96017

7 −0.90407 19 0.99986

8 −0.98999 20 0.95023

9 −0.98748 21 0.81573

10 −0.89676 22 0.60835

11 −0.72593 23 0.34664

12 −0.49026 24 0.053955

Table 2 Voltage as a function of time.

( ) ( )V  tE( )s   t ( )s   t ( ) ( )V  tE
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Solution:
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Example 3 Cont.
For second order Lagrangian polynomial interpolation, we choose the 
voltage given by

Since we want to find the voltage at           , and we are using a second 
order Lagrangian polynomial, we need to choose the three points closest to

that also bracket            to evaluate it.

The three points are            ,            , and            .

Differentiating the above equation gives
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s 8573.6
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Example 3 Cont.
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Additional Resources
For all resources on this topic such as digital audiovisual 
lectures, primers, textbook chapters, multiple-choice 
tests, worksheets in MATLAB, MATHEMATICA, MathCad 
and MAPLE, blogs, related physical problems, please 
visit

http://numericalmethods.eng.usf.edu/topics/discrete_02
dif.html

http://numericalmethods.eng.usf.edu/topics/discrete_02dif.html�
http://numericalmethods.eng.usf.edu/topics/discrete_02dif.html�


THE END
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