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Secant Method – Derivation
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Newton’s Method

Approximate the derivative

Substituting Equation (2) 
into Equation (1) gives the 
Secant method

(1)

(2)

Figure 1 Geometrical illustration of 
the Newton-Raphson method.
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Secant Method – Derivation
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The Geometric Similar Triangles

 

 f(x) 

 f(xi) 

 f(xi-1) 

xi+1 xi-1 xi 
 X 

 B 

 C 

 E  D  A 

11

1

1

)()(

+−

−

+ −
=

− ii

i

ii

i

xx
xf

xx
xf

DE
DC

AE
AB

=

Figure 2 Geometrical representation of 
the Secant method.

The secant method can also be derived from geometry:

can be written as

On rearranging, the secant 
method is given as
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Algorithm for Secant Method



http://numericalmethods.eng.usf.edu6

Step 1
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Calculate the next estimate of the root from two initial guesses

Find the absolute relative approximate error

)()(
))((

1

1
1

−

−
+ −

−
−=

ii

iii
ii xfxf

xxxf
xx



http://numericalmethods.eng.usf.edu7

Step 2

Find if the absolute relative approximate error  is greater 
than the prespecified relative error tolerance.  

If so, go back to step 1, else stop the algorithm.

Also check if the number of iterations has exceeded the 
maximum number of iterations.



( ) ( ){ }3843 ln10775468.8ln10341077.210129241.11 RR
T

−−− ×+×+×=
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Example 1
Thermistors are temperature-measuring devices based on the 
principle that the thermistor material exhibits a change in 
electrical resistance with a change in temperature.  By 
measuring the resistance of the thermistor material, one can 
then determine the temperature.

Figure 3 A typical thermistor.

For a 10K3A Betatherm thermistor, the 
relationship between the resistance, 
R, of the thermistor and the 
temperature is given by 

where T is in Kelvin and R is in ohms.

Thermally
conductive epoxy
coating

Tin plated copper
alloy lead wires
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Example 1 Cont.
For the thermistor, error of no more than ±0.01oC is acceptable.  
To find the range of the resistance that is within this acceptable 
limit at 19oC, we need to solve 

and

Use the Newton-Raphson method of finding roots of equations to 
find the resistance R at 18.99oC. 

a) Conduct three iterations to estimate the root of the above 
equation. 

b) Find the absolute relative approximate error at the end of each 
iteration and the number of significant digits at least correct at 
the end of each iteration.

( ) ( ){ }3843 ln10775468.8ln10341077.210129241.1
15.27301.19

1 RR −−− ×+×+×=
+

( ) ( ){ }3843 ln10775468.8ln10341077.210129241.1
15.27399.18

1 RR −−− ×+×+×=
+
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Example 1 Cont.

( ) ( ){ } 3384 10293775.2ln10775468.8ln10341077.2)( −−− ×−×+×= RRRf
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Figure 4 Graph of the function f(R).
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Example 1 Cont.
Initial guesses: 15000,14000 01 ==− RR

Iteration 1
The estimate of the root is

Figure 5 Graph of the estimate of 
the root after Iteration 1.
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The absolute relative approximate 
error is

The number of significant digits at least correct is 0.
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Example 1 Cont.
Iteration 2
The estimate of the root is

Figure 6 Graph of the estimate of 
the root after Iteration 2.

The absolute relative approximate 
error is

The number of significant digits at least correct is 1.
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Example 1 Cont.
Iteration 3
The estimate of the root is

Figure 7 Graph of the estimate of 
the root after Iteration 3.

The absolute relative approximate 
error is

The number of significant digits at least correct is 3.
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Advantages

 Converges fast, if it converges
 Requires two guesses that do not need to 

bracket the root
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Drawbacks

Division by zero
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Drawbacks (continued)

Root Jumping
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Additional Resources
For all resources on this topic such as digital audiovisual 
lectures, primers, textbook chapters, multiple-choice 
tests, worksheets in MATLAB, MATHEMATICA, MathCad 
and MAPLE, blogs, related physical problems, please 
visit

http://numericalmethods.eng.usf.edu/topics/secant_me
thod.html

http://numericalmethods.eng.usf.edu/topics/secant_method.html�
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