

**Electrical Engineering Majors** 

**Authors: Autar Kaw** 

http://numericalmethods.eng.usf.edu

Transforming Numerical Methods Education for STEM Undergraduates

http://numericalmethods.eng.usf.edu

An <u>iterative</u> method.

#### Basic Procedure:

- -Algebraically solve each linear equation for x<sub>i</sub>
- -Assume an initial guess solution array
- -Solve for each x<sub>i</sub> and repeat
- -Use absolute relative approximate error after each iteration to check if error is within a pre-specified tolerance.

# Gauss-Seidel Method Why?

The Gauss-Seidel Method allows the user to control round-off error.

Elimination methods such as Gaussian Elimination and LU Decomposition are prone to prone to round-off error.

Also: If the physics of the problem are understood, a close initial guess can be made, decreasing the number of iterations needed.

#### Algorithm

A set of *n* equations and *n* unknowns:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + a_{n3}x_3 + \dots + a_{nn}x_n = b_n$$

non-zero

If: the diagonal elements are

Rewrite each equation solving for the corresponding unknown

ex:

First equation, solve for x<sub>1</sub>

Second equation, solve for x<sub>2</sub>

#### Algorithm

#### Rewriting each equation

$$x_{1} = \frac{c_{1} - a_{12}x_{2} - a_{13}x_{3} - \cdots - a_{1n}x_{n}}{a_{11}}$$
 From Equation 1 
$$x_{2} = \frac{c_{2} - a_{21}x_{1} - a_{23}x_{3} - \cdots - a_{2n}x_{n}}{a_{22}}$$
 From equation 2 
$$\vdots \qquad \vdots \qquad \vdots$$
 
$$x_{n-1} = \frac{c_{n-1} - a_{n-1,1}x_{1} - a_{n-1,2}x_{2} - \cdots - a_{n-1,n-2}x_{n-2} - a_{n-1,n}x_{n}}{a_{n-1,n-1}}$$
 From equation n-1 
$$x_{n} = \frac{c_{n} - a_{n1}x_{1} - a_{n2}x_{2} - \cdots - a_{n,n-1}x_{n-1}}{a_{nn}}$$
 From equation n

#### **Algorithm**

General Form of each equation

$$x_1 = \frac{c_1 - \sum_{\substack{j=1\\j \neq 1}}^{n} a_{1j} x_j}{a_{11}}$$

$$c_{2} - \sum_{\substack{j=1\\j\neq 2}}^{n} a_{2j} x_{j}$$

$$x_{2} = \frac{a_{2j} x_{j}}{a_{22}}$$

$$c_{1} - \sum_{\substack{j=1\\j\neq 1}}^{n} a_{1j} x_{j}$$

$$c_{n-1} - \sum_{\substack{j=1\\j\neq n-1}}^{n} a_{n-1,j} x_{j}$$

$$x_{n-1} = \frac{a_{n-1,j} x_{j}}{a_{n-1,n-1}}$$

$$c_n - \sum_{\substack{j=1\\j\neq n}}^n a_{nj} x_j$$
$$x_n = \frac{a_{nn}}{a_{nn}}$$

#### Algorithm

General Form for any row 'i'

$$c_{i} - \sum_{\substack{j=1\\j\neq i}}^{n} a_{ij} x_{j}$$

$$x_{i} = \frac{1,2,...,n}{a_{ii}}$$

How or where can this equation be used?

#### Solve for the unknowns

Assume an initial guess for [X]

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix}$$

Use rewritten equations to solve for each value of  $x_i$ .

Important: Remember to use the most recent value of  $x_i$ . Which means to apply values calculated to the calculations remaining in the **current** iteration.

Calculate the Absolute Relative Approximate Error

$$\left| \in_a \right|_i = \left| \frac{x_i^{new} - x_i^{old}}{x_i^{new}} \right| \times 100$$

So when has the answer been found?

The iterations are stopped when the absolute relative approximate error is less than a prespecified tolerance for all unknowns.

Three-phase loads are common in AC systems. When the system is balanced the analysis can be simplified to a single equivalent circuit model. However, when it is unbalanced the only practical solution involves the solution of simultaneous linear equations. In a model the following equations need to be solved.

$$\begin{bmatrix} 0.7460 & -0.4516 & 0.0100 & -0.0080 & 0.0100 & -0.0080 \\ 0.4516 & 0.7460 & 0.0080 & 0.0100 & 0.0080 & 0.0100 \\ 0.0100 & -0.0080 & 0.7787 & -0.5205 & 0.0100 & -0.0080 \\ 0.0080 & 0.0100 & 0.5205 & 0.7787 & 0.0080 & 0.0100 \\ 0.0100 & -0.0080 & 0.0100 & -0.0080 & 0.8080 & -0.6040 \\ 0.0080 & 0.0100 & 0.0080 & 0.0100 & 0.6040 & 0.8080 \end{bmatrix} \begin{bmatrix} I_{ar} \\ I_{bi} \\ I_{cr} \\ I_{ci} \end{bmatrix} = \begin{bmatrix} 120 \\ 0.000 \\ -103.9 \\ -60.00 \\ 103.9 \end{bmatrix}$$

Find the values of  $I_{ar}$ ,  $I_{ai}$ ,  $I_{br}$ ,  $I_{bi}$ ,  $I_{cr}$ , and  $I_{ci}$  using the Gauss-Seidel method.

Rewrite each equation to solve for each of the unknowns

$$\begin{split} I_{ar} &= \frac{120.00 - (-0.4516)I_{ai} - 0.0100I_{br} - (-0.0080)I_{bi} - 0.0100I_{cr} - (-0.0080)I_{ci}}{0.7460} \\ I_{ai} &= \frac{0.000 - 0.4516I_{ar} - 0.0080I_{br} - 0.0100I_{bi} - 0.0080I_{cr} - 0.0100I_{ci}}{0.7460} \\ I_{br} &= \frac{-60.00 - 0.0100I_{ar} - (-0.0080)I_{ai} - (-0.5205)I_{bi} - 0.0100I_{cr} - (-0.0080)I_{ci}}{0.7787} \\ I_{bi} &= \frac{-103.9 - 0.0080I_{ar} - 0.0100I_{ai} - 0.5205I_{br} - 0.0080I_{cr} - 0.0100I_{ci}}{0.7787} \\ I_{cr} &= \frac{-60.00 - 0.0100I_{ar} - (-0.0080)I_{ai} - 0.0100I_{br} - (-0.0080)I_{bi} - (-0.6040)I_{ci}}{0.8080} \\ I_{ai} &= \frac{103.9 - 0.0080I_{ar} - 0.0100I_{ai} - 0.0080I_{br} - 0.0100I_{bi} - 0.6040I_{cr}}{0.8080} \end{split}$$

For iteration 1, start with an initial guess value

Initial Guess:  $\begin{bmatrix} I_{ar} \\ I_{ai} \\ I_{br} \\ I_{bi} \\ I_{cr} \\ I_{cr} \end{bmatrix} = \begin{bmatrix} 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \end{bmatrix}$ 

Substituting the guess values into the first equation

$$I_{ar} = \frac{120 - (-0.4516)I_{ai} - 0.0100I_{br} - (-0.0080)I_{bi} - 0.0100I_{cr} - (-0.0080)I_{ci}}{0.7460}$$
$$= 172.86$$

Substituting the new value of  $I_{ar}$  and the remaining guess values into the second equation

$$I_{ai} = \frac{0.00 - 0.4516I_{ar} - 0.0080I_{br} - 0.0100I_{bi} - 0.0080I_{cr} - 0.0100I_{ci}}{0.7460}$$
$$= -105.61$$

Substituting the new values  $I_{ar}$ ,  $I_{ai}$ , and the remaining guess values into the third equation

$$I_{br} = \frac{-60.00 - 0.0100I_{ar} - (-0.0080)I_{ai} - (-0.5205)I_{bi} - 0.0100I_{cr} - (-0.0080)I_{ci}}{0.7787}$$
$$= -67.039$$

Substituting the new values  $I_{ar}$ ,  $I_{ai}$ ,  $I_{br}$ , and the remaining guess values into the fourth equation

$$\begin{split} I_{bi} = & \frac{-103.9 - 0.0080I_{ar} - 0.0100I_{ai} - 0.5205I_{br} - 0.0080I_{cr} - 0.0100I_{ci}}{0.7787} \\ = & -89.499 \end{split}$$

Substituting the new values  $I_{ar}$ ,  $I_{ai}$ ,  $I_{br}$ ,  $I_{bi}$ , and the remaining guess values into the fifth equation

$$\begin{split} I_{cr} = & \frac{-60.00 - 0.0100 I_{ar} - \left(-0.0080\right) I_{ai} - 0.0100 I_{br} - \left(-0.0080\right) I_{bi} - \left(-0.6040\right) I_{ci}}{0.8080} \\ = & -62.548 \end{split}$$

Substituting the new values  $I_{ar}$ ,  $I_{ai}$ ,  $I_{br}$ ,  $I_{bi}$ ,  $I_{cr}$ , and the remaining guess value into the sixth equation

$$I_{ci} = \frac{103.9 - 0.0080I_{ar} - 0.0100I_{ai} - 0.0080I_{br} - 0.0100I_{bi} - 0.6040I_{cr}}{0.8080}$$
$$= 176.71$$

At the end of the first iteration, the solution matrix is:

$$\begin{bmatrix} I_{ar} \\ I_{ai} \\ I_{br} \\ I_{bi} \\ I_{cr} \\ I_{ci} \end{bmatrix} = \begin{bmatrix} 172.86 \\ -105.61 \\ -67.039 \\ -89.499 \\ -62.548 \\ 176.71 \end{bmatrix}$$

How accurate is the solution? Find the absolute relative approximate error using:

$$\left| \in_a \right|_i = \left| \frac{x_i^{new} - x_i^{old}}{x_i^{new}} \right| \times 100$$

Calculating the absolute relative approximate errors

$$\left| \in_a \right|_1 = \left| \frac{172.86 - 20}{172.86} \right| \times 100 = 88.430\%$$

$$\left| \in_a \right|_2 = \left| \frac{-105.61 - 20}{-105.61} \right| \times 100 = 118.94\%$$

$$\left| \in_a \right|_3 = \left| \frac{-67.039 - 20}{-67.039} \right| \times 100 = 129.83\%$$

$$\left| \in_a \right|_4 = \left| \frac{-89.499 - 20}{-89.499} \right| \times 100 = 122.35\%$$

$$\left| \in_a \right|_5 = \left| \frac{-62.548 - 20}{-62.548} \right| \times 100 = 131.98\%$$

$$\left| \in_a \right|_6 = \left| \frac{176.71 - 20}{176.71} \right| \times 100 = 88.682\%$$

The maximum error after the first iteration is:

131.98%

Another iteration is needed!

Starting with the values obtained in iteration #1

$$\begin{bmatrix} I_{ar} \\ I_{ai} \\ I_{br} \\ I_{bi} \\ I_{cr} \\ I_{ci} \end{bmatrix} = \begin{bmatrix} 172.86 \\ -105.61 \\ -67.039 \\ -89.499 \\ -62.548 \\ 176.71 \end{bmatrix}$$

Substituting the values from Iteration 1 into the first equation

$$I_{ar} = \frac{120.00 - (-0.4516)I_{ai} - 0.0100I_{br} - (-0.0080)I_{bi} - 0.0100I_{cr} - (-0.0080)I_{ci}}{0.7460}$$

$$= 99.600$$

Substituting the new value of  $I_{ar}$  and the remaining values from Iteration 1 into the second equation

$$I_{ai} = \frac{0.00 - 0.4516I_{ar} - 0.0080I_{br} - 0.0100I_{bi} - 0.0080I_{cr} - 0.0100I_{ci}}{0.7460}$$
$$= -60.073$$

Substituting the new values  $I_{ar}$ ,  $I_{ai}$ , and the remaining values from Iteration 1 into the third equation

$$I_{br} = \frac{-60.00 - 0.0100I_{ar} - (-0.0080)I_{ai} - (-0.5205)I_{bi} - 0.0100I_{cr} - (-0.0080)I_{ci}}{0.7787}$$

$$= -136.15$$

Substituting the new values  $I_{ar}$ ,  $I_{ai}$ ,  $I_{br}$ , and the remaining values from Iteration 1 into the fourth equation

$$I_{bi} = \frac{-103.9 - 0.0080I_{ar} - 0.0100I_{ai} - 0.5205I_{br} - 0.0080I_{cr} - 0.0100I_{ci}}{0.7787}$$
$$= -44.299$$

Substituting the new values  $I_{ar}$ ,  $I_{ai}$ ,  $I_{br}$ ,  $I_{bi}$ , and the remaining values From Iteration 1 into the fifth equation

$$I_{cr} = \frac{-60.00 - 0.0100I_{ar} - (-0.0080)I_{ai} - 0.0100I_{br} - (-0.0080)I_{bi} - (-0.6040)I_{ci}}{0.8080}$$

$$= 57.259$$

Substituting the new values  $I_{ar}$ ,  $I_{ai}$ ,  $I_{br}$ ,  $I_{bi}$ ,  $I_{cr}$ , and the remaining value from Iteration 1 into the sixth equation

$$I_{ci} = \frac{103.9 - 0.0080I_{ar} - 0.0100I_{ai} - 0.0080I_{br} - 0.0100I_{bi} - 0.6040I_{cr}}{0.8080}$$
$$= 87.441$$

The solution matrix at the end of the second iteration is: 
$$\begin{bmatrix} I_{ar} \\ I_{ai} \\ I_{br} \\ I_{bi} \\ I_{cr} \\ I_{ci} \end{bmatrix} = \begin{bmatrix} 99.600 \\ -60.073 \\ -136.15 \\ -44.299 \\ 57.259 \\ 87.441 \end{bmatrix}$$

Calculating the absolute relative approximate errors for the second iteration

$$\left| \in_a \right|_1 = \left| \frac{99.600 - 172.86}{99.600} \right| \times 100 = 73.552\%$$

$$\left| \in_a \right|_2 = \left| \frac{-60.073 - (-105.61)}{-60.073} \right| \times 100 = 75.796\%$$

$$\left| \in_a \right|_3 = \left| \frac{-136.35 - (-67.039)}{-136.35} \right| \times 100 = 50.762\%$$

$$\left| \in_a \right|_4 = \left| \frac{-44.299 - (-89.499)}{-44.299} \right| \times 100 = 102.03\%$$

$$\left| \in_a \right|_5 = \left| \frac{57.259 - (-62.548)}{57.259} \right| \times 100 = 209.24\%$$

$$\left| \in_a \right|_6 = \left| \frac{87.441 - 176.71}{87.441} \right| \times 100 = 102.09\%$$

The maximum error after the second iteration is:

209.24%

More iterations are needed!

Repeating more iterations, the following values are obtained

| Iteration | $I_{ar}$ | $I_{ai}$ | $I_{br}$ | $I_{bi}$ | $I_{cr}$ | $I_{ci}$ |
|-----------|----------|----------|----------|----------|----------|----------|
| 1         | 172.86   | -105.61  | -67.039  | -89.499  | -62.548  | 176.71   |
| 2         | 99.600   | -60.073  | -136.15  | -44.299  | 57.259   | 87.441   |
| 3         | 126.01   | -76.015  | -108.90  | -62.667  | -10.478  | 137.97   |
| 4         | 117.25   | -70.707  | -119.62  | -55.432  | 27.658   | 109.45   |
| 5         | 119.87   | -72.301  | -115.62  | -58.141  | 6.2513   | 125.49   |
| 6         | 119.28   | -71.936  | -116.98  | -57.216  | 18.241   | 116.53   |

| - CO 2 |
|--------|
| 582    |
| .09    |
| 523    |
| 001    |
| 742    |
| 384    |
| 2      |

After six iterations, the solution matrix is

$$\begin{bmatrix} I_{ar} \\ I_{ai} \\ I_{br} \\ I_{bi} \\ I_{cr} \\ I_{ci} \end{bmatrix} = \begin{bmatrix} 119.28 \\ -71.936 \\ -116.98 \\ 57.216 \\ 18.241 \\ 116.53 \end{bmatrix}$$

The maximum error after the sixth iteration is:

65.729%

The absolute relative approximate error is still high, but allowing for more iterations, the error quickly begins to converge to zero.

What could have been done differently to allow for a faster convergence?

Repeating more iterations, the following values are obtained

| Iteration | $I_{ar}$ | $I_{ai}$ | $I_{br}$ | $I_{bi}$ | $I_{cr}$ | $I_{ci}$ |
|-----------|----------|----------|----------|----------|----------|----------|
| 32        | 119.33   | -71.973  | -116.66  | -57.432  | 13.940   | 119.74   |
| 33        | 119.33   | -71.973  | -116.66  | -57.432  | 13.940   | 119.74   |

| Iteration | $\left  \in_{a} \right _{1} \%$ | ∈ <sub>a</sub>   <sub>2</sub> % | $\left  \in_{\mathbf{a}} \right _{3} \%$ | ∈ <sub>a</sub>   <sub>4</sub> % | $\left  \in_{a} \right _{5} \%$ | ∈ <sub>a</sub>   <sub>6</sub> % |
|-----------|---------------------------------|---------------------------------|------------------------------------------|---------------------------------|---------------------------------|---------------------------------|
| 32        | 3.0666×10 <sup>-7</sup>         | 3.0047×10 <sup>-7</sup>         | 4.2389×10 <sup>-7</sup>                  | 5.7116×10 <sup>-7</sup>         | 2.0941×10 <sup>-5</sup>         | 1.8238×10 <sup>−6</sup>         |
| 33        | 1.7062×10 <sup>-7</sup>         | 1.6718×10 <sup>-7</sup>         | 2.3601×10 <sup>-7</sup>                  | 3.1801×10 <sup>-7</sup>         | 1.1647×10 <sup>-5</sup>         | 1.0144×10 <sup>-6</sup>         |

After 33 iterations, the solution matrix is 
$$\begin{bmatrix} I_{ar} \\ I_{ai} \\ I_{br} \\ I_{bi} \\ I_{cr} \\ I_{ci} \end{bmatrix} = \begin{bmatrix} 119.33 \\ -71.973 \\ -116.66 \\ -57.432 \\ 13.940 \\ 119.74 \end{bmatrix}$$

The maximum absolute relative approximate error is  $1.1647 \times 10^{-5}\%$ .

#### Gauss-Seidel Method: Pitfall

Even though done correctly, the answer may not converge to the correct answer.

This is a pitfall of the Gauss-Siedel method: not all systems of equations will converge.

Is there a fix?

One class of system of equations always converges: One with a *diagonally* dominant coefficient matrix.

Diagonally dominant: [A] in [A] [X] = [C] is diagonally dominant if:

$$\left|a_{ii}\right| \geq \sum_{\substack{j=1\\j\neq i}}^n \left|a_{ij}\right| \quad \text{for all 'i'} \qquad \text{and } \left|a_{ii}\right| > \sum_{\substack{j=1\\j\neq i}}^n \left|a_{ij}\right| \text{ for at least one 'i'}$$

#### Gauss-Seidel Method: Pitfall

Diagonally dominant: The coefficient on the diagonal must be at least equal to the sum of the other coefficients in that row and at least one row with a diagonal coefficient greater than the sum of the other coefficients in that row.

Which coefficient matrix is diagonally dominant?

$$[A] = \begin{bmatrix} 2 & 5.81 & 34 \\ 45 & 43 & 1 \\ 123 & 16 & 1 \end{bmatrix} \qquad [B] = \begin{bmatrix} 124 & 34 & 56 \\ 23 & 53 & 5 \\ 96 & 34 & 129 \end{bmatrix}$$

$$[B] = \begin{bmatrix} 124 & 34 & 56 \\ 23 & 53 & 5 \\ 96 & 34 & 129 \end{bmatrix}$$

Most physical systems do result in simultaneous linear equations that have diagonally dominant coefficient matrices.

Given the system of equations

$$12x_1 + 3x_2 - 5x_3 = 1$$

$$x_1 + 5x_2 + 3x_3 = 28$$

$$3x_1 + 7x_2 + 13x_3 = 76$$

The coefficient matrix is:

$$[A] = \begin{bmatrix} 12 & 3 & -5 \\ 1 & 5 & 3 \\ 3 & 7 & 13 \end{bmatrix}$$

With an initial guess of

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Will the solution converge using the Gauss-Siedel method?

Checking if the coefficient matrix is diagonally dominant

$$[A] = \begin{bmatrix} 12 & 3 & -5 \\ 1 & 5 & 3 \\ 3 & 7 & 13 \end{bmatrix}$$

$$|a_{11}| = |12| = 12 \ge |a_{12}| + |a_{13}| = |3| + |-5| = 8$$
  
 $|a_{22}| = |5| = 5 \ge |a_{21}| + |a_{23}| = |1| + |3| = 4$   
 $|a_{33}| = |13| = 13 \ge |a_{31}| + |a_{32}| = |3| + |7| = 10$ 

The inequalities are all true and at least one row is *strictly* greater than:

Therefore: The solution should converge using the Gauss-Siedel Method

#### Rewriting each equation

$$\begin{bmatrix} 12 & 3 & -5 \\ 1 & 5 & 3 \\ 3 & 7 & 13 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 \\ 76 \end{bmatrix}$$

$$x_1 = \frac{1 - 3x_2 + 5x_3}{12}$$

$$x_2 = \frac{28 - x_1 - 3x_3}{5}$$

$$x_3 = \frac{76 - 3x_1 - 7x_2}{13}$$

#### With an initial guess of

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$x_1 = \frac{1 - 3(0) + 5(1)}{12} = 0.50000$$

$$x_2 = \frac{28 - (0.5) - 3(1)}{5} = 4.9000$$

$$x_3 = \frac{76 - 3(0.50000) - 7(4.9000)}{13} = 3.0923$$

The absolute relative approximate error

$$\left| \in_a \right|_1 = \left| \frac{0.50000 - 1.0000}{0.50000} \right| \times 100 = 100.00\%$$

$$\left| \in_{a} \right|_{2} = \left| \frac{4.9000 - 0}{4.9000} \right| \times 100 = 100.00\%$$

$$\left| \in_{a} \right|_{3} = \left| \frac{3.0923 - 1.0000}{3.0923} \right| \times 100 = 67.662\%$$

The maximum absolute relative error after the first iteration is 100%

#### After Iteration #1

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.5000 \\ 4.9000 \\ 3.0923 \end{bmatrix}$$

# Substituting the x values into the equations

$$x_1 = \frac{1 - 3(4.9000) + 5(3.0923)}{12} = 0.14679$$

$$x_2 = \frac{28 - (0.14679) - 3(3.0923)}{5} = 3.7153$$

$$x_3 = \frac{76 - 3(0.14679) - 7(4.900)}{13} = 3.8118$$

#### After Iteration #2

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.14679 \\ 3.7153 \\ 3.8118 \end{bmatrix}$$

Iteration #2 absolute relative approximate error

$$\left| \in_{a} \right|_{1} = \left| \frac{0.14679 - 0.50000}{0.14679} \right| \times 100 = 240.61\%$$

$$\left| \in_{a} \right|_{2} = \left| \frac{3.7153 - 4.9000}{3.7153} \right| \times 100 = 31.889\%$$

$$\left| \in_{a} \right|_{3} = \left| \frac{3.8118 - 3.0923}{3.8118} \right| \times 100 = 18.874\%$$

The maximum absolute relative error after the first iteration is 240.61%

This is much larger than the maximum absolute relative error obtained in iteration #1. Is this a problem?

Repeating more iterations, the following values are obtained

| Iteration | $a_1$   | $\left  \in_a \right _1 \%$ | $a_2$  | $\left  \in_a \right _2 \%$ | $a_3$  | $\left  \in_a \right _3 \%$ |
|-----------|---------|-----------------------------|--------|-----------------------------|--------|-----------------------------|
| 1         | 0.50000 | 100.00                      | 4.9000 | 100.00                      | 3.0923 | 67.662                      |
| 2         | 0.14679 | 240.61                      | 3.7153 | 31.889                      | 3.8118 | 18.876                      |
| 3         | 0.74275 | 80.236                      | 3.1644 | 17.408                      | 3.9708 | 4.0042                      |
| 4         | 0.94675 | 21.546                      | 3.0281 | 4.4996                      | 3.9971 | 0.65772                     |
| 5         | 0.99177 | 4.5391                      | 3.0034 | 0.82499                     | 4.0001 | 0.074383                    |
| 6         | 0.99919 | 0.74307                     | 3.0001 | 0.10856                     | 4.0001 | 0.00101                     |

The solution obtained 
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.99919 \\ 3.0001 \\ 4.0001 \end{bmatrix}$$
 is close to the exact solution of  $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$ .

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}.$$

#### Given the system of equations

$$3x_1 + 7x_2 + 13x_3 = 76$$

$$x_1 + 5x_2 + 3x_3 = 28$$

$$12x_1 + 3x_2 - 5x_3 = 1$$

With an initial guess of

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Rewriting the equations

$$x_1 = \frac{76 - 7x_2 - 13x_3}{3}$$

$$x_2 = \frac{28 - x_1 - 3x_3}{5}$$

$$x_3 = \frac{1 - 12x_1 - 3x_2}{-5}$$

Conducting six iterations, the following values are obtained

| Iteration | $a_1$            | $\left  \in_a \right _1 \%$ | $A_2$           | $\left  \in_{a} \right _{2} \%$ | $a_3$            | $\left  \in_{a} \right _{3} \%$ |
|-----------|------------------|-----------------------------|-----------------|---------------------------------|------------------|---------------------------------|
| 1         | 21.000           | 95.238                      | 0.80000         | 100.00                          | 50.680           | 98.027                          |
| 2         | -196.15          | 110.71                      | 14.421          | 94.453                          | -462.30          | 110.96                          |
| 3         | -1995.0          | 109.83                      | -116.02         | 112.43                          | 4718.1           | 109.80                          |
| 4         | -20149           | 109.90                      | 1204.6          | 109.63                          | -47636           | 109.90                          |
| 5         | $2.0364 \ 10^5$  | 109.89                      | -12140          | 109.92                          | $4.8144 \ 10^5$  | 109.89                          |
| 6         | $-2.0579 \ 10^5$ | 109.89                      | $1.2272 \ 10^5$ | 109.89                          | $-4.8653 \ 10^6$ | 109.89                          |

The values are not converging.

Does this mean that the Gauss-Seidel method cannot be used?

The Gauss-Seidel Method can still be used

The coefficient matrix is not diagonally dominant

$$[A] = \begin{bmatrix} 3 & 7 & 13 \\ 1 & 5 & 3 \\ 12 & 3 & -5 \end{bmatrix}$$

But this is the same set of equations used in example #2, which did converge.

$$[A] = \begin{bmatrix} 12 & 3 & -5 \\ 1 & 5 & 3 \\ 3 & 7 & 13 \end{bmatrix}$$

If a system of linear equations is not diagonally dominant, check to see if rearranging the equations can form a diagonally dominant matrix.

Not every system of equations can be rearranged to have a diagonally dominant coefficient matrix.

Observe the set of equations

$$x_1 + x_2 + x_3 = 3$$
$$2x_1 + 3x_2 + 4x_3 = 9$$
$$x_1 + 7x_2 + x_3 = 9$$

Which equation(s) prevents this set of equation from having a diagonally dominant coefficient matrix?

# Gauss-Seidel Method Summary

- -Advantages of the Gauss-Seidel Method
- -Algorithm for the Gauss-Seidel Method
- -Pitfalls of the Gauss-Seidel Method

Questions?

#### Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

http://numericalmethods.eng.usf.edu/topics/gauss\_seidel.html

# THE END

http://numericalmethods.eng.usf.edu