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Chapter 07.04

Romberg Rule of Integration

After reading this chapter, you should be able to:

1. derive the Romberg rule of integration, and 

2. use the Romberg rule of integration to solve problems.

What is integration?

Integration is the process of measuring the area under a function plotted on a graph.  Why would we want to integrate a function?  Among the most common examples are finding the velocity of a body from an acceleration function, and displacement of a body from a velocity function.  Throughout many engineering fields, there are (what sometimes seems like) countless applications for integral calculus.  You can read about some of these applications in Chapters 07.00A-07.00G.  

Sometimes, the evaluation of expressions involving these integrals can become daunting, if not indeterminate.  For this reason, a wide variety of numerical methods has been developed to simplify the integral.

Here, we will discuss the Romberg rule of approximating integrals of the form
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	          Figure 1 Integration of a function.


Error in Multiple-Segment Trapezoidal Rule

The true error obtained when using the multiple segment trapezoidal rule with 
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is given by
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where for each 
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for the estimate of 
[image: image16.wmf](

)

ò

b

a

dx

x

f

 using the 
[image: image17.wmf]n

-segment trapezoidal rule.
Table 1 shows the results obtained for 
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using the multiple-segment trapezoidal rule.

Table 1  Values obtained using multiple segment trapezoidal rule for 
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The true error for the 1-segment trapezoidal rule is 
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, while for the 2-segment rule, the true error is 
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This information, although interesting, can also be used to get a better approximation of the integral.  That is the basis of Richardson’s extrapolation formula for integration by the trapezoidal rule.

Richardson’s Extrapolation Formula for Trapezoidal Rule

The true error,
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where 
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 is an approximate constant of proportionality.
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Then from Equations (4) and (5), 
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If the number of segments is doubled from 
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 in the trapezoidal rule,
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Equations (6) and (7) can be solved simultaneously to get
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Example 1
All electrical components, especially off-the-shelf components do not match their nominal value.  Variations in materials and manufacturing as well as operating conditions can affect their value. Suppose a circuit is designed such that it requires a specific component value, how confident can we be that the variation in the component value will result in acceptable circuit behavior? To solve this problem a probability density function is needed to be integrated to determine the confidence interval.  For an oscillator to have its frequency within 5% of the target of 1 kHz, the likelihood of this happening can then be determined by finding the total area under the normal distribution for the range in question:
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Table 2  Values obtained for Trapezoidal rule. 

	n
	Trapezoidal Rule

	1
	0.11489

	2
	0.99637

	4
	0.96969

	8
	0.97901


a) Use Richardson’s extrapolation formula to find the frequency. Use the 2-segment and 4-segment Trapezoidal rule results given in Table 2.

b) Find the true error, 
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c) Find the absolute relative true error for part (a).

Solution
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Using Richardson’s extrapolation formula for Trapezoidal rule
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b) The exact value of the above integral cannot be found. For calculating the true error and relative true error, we assume the value obtained by adaptive numerical integration using Maple as the exact value. 
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So the true error is
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c) The absolute relative true error, 
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Table 3 shows the Richardson’s extrapolation results using 1, 2, 4, 8 segments.  Results are compared with those of Trapezoidal rule.

	Table 3  Values obtained using Richardson’s extrapolation formula for Trapezoidal rule for 
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Romberg Integration

Romberg integration is the same as Richardson’s extrapolation formula as given by 
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Equation 

.  However, Romberg used a recursive algorithm for the extrapolation as follows.

The estimate of the true error in the trapezoidal rule is given by
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Since the segment width, 
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Equation (2) can be written as
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The estimate of true error is given by
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It can be shown that the exact true error could be written as
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and for small 
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Since we used 
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where the variable 
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 is replaced by 
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Hence the estimate of the true value now is
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Determine another integral value with further halving the step size (doubling the number of segments),
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then
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From Equation (13) and (14),
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The above equation now has the error of 
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Based on this procedure, a general expression for Romberg integration can be written as
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The index 
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 represents the order of extrapolation.  For example,  
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Example 2
All electrical components, especially off-the-shelf components do not match their nominal value.  Variations in materials and manufacturing as well as operating conditions can affect their value. Suppose a circuit is designed such that it requires a specific component value, how confident can we be that the variation in the component value will result in acceptable circuit behavior? To solve this problem a probability density function is needed to be integrated to determine the confidence interval.  For an oscillator to have its frequency within 5% of the target of 1 kHz, the likelihood of this happening can then be determined by finding the total area under the normal distribution for the range in question:
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Use Romberg’s rule to find the frequency.  Use the 1, 2, 4, and 8-segment Trapezoidal rule results as given.

Solution

From Table 2, the needed values from original Trapezoidal rule are
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where the above four values correspond to using 1, 2, 4 and 8 segment Trapezoidal rule, respectively.  To get the first order extrapolation values,
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Similarly
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For the second order extrapolation values,
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Similarly,
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For the third order extrapolation values,
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Table 3 shows these increased correct values in a tree graph.

Table 4 Improved estimates of value of integral using Romberg integration.

 SHAPE  \* MERGEFORMAT 



	INTEGRATION

	
	Topic

	Romberg Rule


	Summary

	Textbook notes of Romberg Rule of integration.
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	Electrical Engineering


	Authors
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	November 14, 2012

	Web Site

	http://numericalmethods.eng.usf.edu
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