Introduction to Scientific Computing

Major: All Engineering Majors

Authors: Autar Kaw, Luke Snyder

http://numericalmethods.eng.usf.edu
Transforming Numerical Methods Education for STEM Undergraduates
Introduction
My advice

• If you don’t let a teacher know at what level you are by asking a question, or revealing your ignorance you will not learn or grow.

• You can’t pretend for long, for you will eventually be found out. Admission of ignorance is often the first step in our education.

 – Steven Covey—Seven Habits of Highly Effective People
Why use Numerical Methods?

• To solve problems that cannot be solved exactly

\[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{u^2}{2}} du \]
Why use Numerical Methods?

• To solve problems that are intractable!
Steps in Solving an Engineering Problem

http://numericalmethods.eng.usf.edu
How do we solve an engineering problem?

1. Problem Description
2. Mathematical Model
3. Solution of Mathematical Model
4. Using the Solution
Example of Solving an Engineering Problem
Bascule Bridge THG

Hub
Trunnion
Girder
Trunnion-Hub-Girder Assembly Procedure

Step 1. Trunnion immersed in dry-ice/alcohol
Step 2. Trunnion warm-up in hub
Step 3. Trunnion-Hub immersed in dry-ice/alcohol
Step 4. Trunnion-Hub warm-up into girder

http://numericalmethods.eng.usf.edu
Problem

After Cooling, the Trunnion Got Stuck in Hub
Why did it get stuck?

Magnitude of contraction needed in the trunnion was 0.015” or more. Did it contract enough?
Video of Assembly Process

Unplugged Version

VH1 Version

http://numericalmethods.eng.usf.edu
Consultant calculations

\[\Delta D = D \times \alpha \times \Delta T \]

\[D = 12.363" \]

\[\alpha = 6.47 \times 10^{-6} \text{ in/in/}^\circ F \]

\[\Delta T = -108 - 80 = -188^\circ F \]

\[\Delta D = (12.363)(6.47 \times 10^{-6})(-188) \]

\[= -0.01504" \]
Is the formula used correct?

\[\Delta D = D \times \alpha \times \Delta T \]

<table>
<thead>
<tr>
<th>T(°F)</th>
<th>(\alpha) (μin/in/°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-340</td>
<td>2.45</td>
</tr>
<tr>
<td>-300</td>
<td>3.07</td>
</tr>
<tr>
<td>-220</td>
<td>4.08</td>
</tr>
<tr>
<td>-160</td>
<td>4.72</td>
</tr>
<tr>
<td>-80</td>
<td>5.43</td>
</tr>
<tr>
<td>0</td>
<td>6.00</td>
</tr>
<tr>
<td>40</td>
<td>6.24</td>
</tr>
<tr>
<td>80</td>
<td>6.47</td>
</tr>
</tbody>
</table>
The Correct Model Would Account for Varying Thermal Expansion Coefficient

\[\Delta D = D \int_{T_a}^{T_c} \alpha(T) \, dT \]
Can You Roughly Estimate the Contraction?

$$\Delta D = D \int_{T_a}^{T_c} \alpha(T) dT$$

$$T_a = 80^\circ F; \ T_c = -108^\circ F; \ D = 12.363''$$
Can You Find a Better Estimate for the Contraction?

\[\Delta D = D \int_{T_a}^{T_c} \alpha(T) dT \]

- \(T_a = 80^\circ F \)
- \(T_c = -108^\circ F \)
- \(D = 12.363" \)
Estimating Contraction Accurately

Change in diameter (ΔD) by cooling it in dry ice/alcohol is given by

$$\Delta D = D \int_{T_a}^{T_c} \alpha(T) dT$$

$T_a = 80^\circ F$

$T_c = -108^\circ F$

$D = 12.363"$

$$\alpha = -1.2278 \times 10^{-5} T^2 + 6.1946 \times 10^{-3} T + 6.0150$$

$$\Delta D = -0.0137"$$
So what is the solution to the problem?

One solution is to immerse the trunnion in liquid nitrogen which has a boiling point of -321°F as opposed to the dry-ice/alcohol temperature of -108°F.

\[\Delta D = -0.0244" \]
Revisiting steps to solve a problem

1) Problem Statement: Trunnion got stuck in the hub.

2) Modeling: Developed a new model

\[
\Delta D = D \int_{T_a}^{T_c} \alpha(T) dT
\]

3) Solution: 1) Used trapezoidal rule OR b) Used regression and integration.

4) Implementation: Cool the trunnion in liquid nitrogen.
Introduction to Numerical Methods

Mathematical Procedures

http://numericalmethods.eng.usf.edu
Mathematical Procedures

• Nonlinear Equations
• Differentiation
• Simultaneous Linear Equations
• Curve Fitting
 – Interpolation
 – Regression
• Integration
• Ordinary Differential Equations
• Other Advanced Mathematical Procedures:
 – Partial Differential Equations
 – Optimization
 – Fast Fourier Transforms
Nonlinear Equations

How much of the floating ball is under water?

Diameter = 0.11 m
Specific Gravity = 0.6

\[x^3 - 0.165x^2 + 3.993 \times 10^{-4} = 0 \]
Nonlinear Equations

How much of the floating ball is under the water?

\[f(x) = x^3 - 0.165x^2 + 3.993 \times 10^{-4} = 0 \]
Differentiation

What is the acceleration at $t=7$ seconds?

\[a = \frac{dv}{dt} \]

\[v(t) = 2200 \ln \left(\frac{16 \times 10^4}{16 \times 10^4 - 5000t} \right) - 9.8t \]
Differentiation

What is the acceleration at t=7 seconds?

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>5</th>
<th>8</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vel (m/s)</td>
<td>106</td>
<td>177</td>
<td>600</td>
</tr>
</tbody>
</table>

\[a = \frac{dv}{dt} \]
Simultaneous Linear Equations

Find the velocity profile, given

\[
v(t) = at^2 + bt + c, \quad 5 \leq t \leq 12
\]

Three simultaneous linear equations

\[
\begin{align*}
25a + 5b + c &= 106 \\
64a + 8b + c &= 177 \\
144a + 12b + c &= 600
\end{align*}
\]

Time (s)	5	8	12 \\
Vel (m/s) | 106 | 177 | 600
Interpolation

What is the velocity of the rocket at t=7 seconds?

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>5</th>
<th>8</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vel (m/s)</td>
<td>106</td>
<td>177</td>
<td>600</td>
</tr>
</tbody>
</table>

http://numericalmethods.eng.usf.edu
Regression

Thermal expansion coefficient data for cast steel

http://numericalmethods.eng.usf.edu
Regression (cont)

\[\alpha (\text{min/in/F}) \]

\[\text{Temperature (F)} \]

http://numericalmethods.eng.usf.edu
Integration

Finding the diametric contraction in a steel shaft when dipped in liquid nitrogen.

\[\Delta D = D \int_{T_{\text{room}}}^{T_{\text{fluid}}} \alpha \, dT \]
Ordinary Differential Equations

How long does it take a trunnion to cool down?

\[mc \frac{d\theta}{dt} = -hA(\theta - \theta_a), \quad \theta(0) = \theta_{room} \]
Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

http://numericalmethods.eng.usf.edu/topics/introduction_numerical.html
THE END

http://numericalmethods.eng.usf.edu