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What is a Taylor series?
Some examples of Taylor series which you must have 
seen
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General Taylor Series
The general form of the Taylor series is given by
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provided that all derivatives of f(x) are continuous and 
exist in the interval [x,x+h] 

What does this mean in plain English?

As Archimedes would have said, “Give me the value of the function 
at a single point, and the value of all (first, second, and so on) its 
derivatives at that single point, and I can give you the value of the 
function at any other point” (fine print excluded) 
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Example—Taylor Series
Find the value of ( )6f given that ( ) ,1254 =f ( ) ,744 =′f
( ) ,304 =′′f ( ) 64 =′′′f and all other higher order derivatives

of ( )xf at 4=x are zero.

Solution:
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Example (cont.)
Solution: (cont.)
Since the higher order derivatives are zero,
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Note that to find ( )6f exactly, we only need the value
of the function and all its derivatives at some other 
point, in this case 4=x
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Derivation for Maclaurin Series for ex

Derive the Maclaurin series
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The Maclaurin series is simply the Taylor series about  
the point x=0
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Derivation (cont.)
Since xnxxx exfexfexfexf ==′′=′= )( , ... , )(  , )( , )( and

1)0( 0 == ef n

the Maclaurin series is then
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Error in Taylor Series
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where the remainder is given by
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that is, c is some point in the domain [x,x+h]

The Taylor polynomial of order n of a function f(x) 
with (n+1) continuous derivatives in the domain 
[x,x+h] is given by
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Example—error in Taylor series
The Taylor series for xe at point 0=x is given by
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It can be seen that as the number of terms used
increases, the error bound decreases and hence a
better estimate of the function can be found. 

How many terms would it require to get an 
approximation of e1 within a magnitude of 
true error of less than 10-6.
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Example—(cont.)
Solution:
Using ( )1+n terms of Taylor series gives error bound of
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Example—(cont.)
Solution: (cont.)

So if we want to find out how many terms it would
require to get an approximation of 1e within a
magnitude of true error of less than 610− ,

610
)!1(

−<
+n
e

en 610)!1( >+

310)!1( 6 ×>+n
9≥n

So 9 terms or more are needed to get a true error
less than 610−



Additional Resources
For all resources on this topic such as digital audiovisual 
lectures, primers, textbook chapters, multiple-choice 
tests, worksheets in MATLAB, MATHEMATICA, MathCad 
and MAPLE, blogs, related physical problems, please 
visit

http://numericalmethods.eng.usf.edu/topics/taylor_seri
es.html

http://numericalmethods.eng.usf.edu/topics/gaussian_elimination.html�
http://numericalmethods.eng.usf.edu/topics/taylor_series.html�
http://numericalmethods.eng.usf.edu/topics/taylor_series.html�


THE END
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