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Chapter 01.07

Taylor Theorem Revisited

After reading this chapter, you should be able to

1. understand the basics of Taylor’s theorem,
2. write transcendental and trigonometric functions as Taylor’s polynomial,
3. use Taylor’s theorem to find the values of a function at any point, given the values of the function and all its derivatives at a particular point,

4. calculate errors and error bounds of approximating a function by Taylor series, and
5. revisit the chapter whenever Taylor’s theorem is used to derive or explain numerical methods for various mathematical procedures.

The use of Taylor series exists in so many aspects of numerical methods that it is imperative to devote a separate chapter to its review and applications.  For example, you must have come across expressions such as
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All the above expressions are actually a special case of Taylor series called the Maclaurin series.  Why are these applications of Taylor’s theorem important for numerical methods?  Expressions such as given in Equations (1), (2) and (3) give you a way to find the approximate values of these functions by using the basic arithmetic operations of addition, subtraction, division, and multiplication.  

Example 1

Find the value of 
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 using the first five terms of the Maclaurin series.

Solution

The first five terms of the Maclaurin series for 
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The exact value of 
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 up to 5 significant digits is also 1.2840.  

But the above discussion and example do not answer our question of what a Taylor series is.  

Here it is, for a function 
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provided all derivatives of 
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What does this mean in plain English?  

As Archimedes would have said (without the fine print), “Give me the value of the function at a single point, and the value of all (first, second, and so on) its derivatives, and I can give you the value of the function at any other point”.  

            It is very important to note that the Taylor series is not asking for the expression of the function and its derivatives, just the value of the function and its derivatives at a single point.  

           Now the fine print:  Yes, all the derivatives have to exist and be continuous between 
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 (the point where you are) to the point, 
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 where you are wanting to calculate the function at.  However, if you want to calculate the function approximately by using the 
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Example 2
Take 
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Hence
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The value of 
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which is very close to the value I just obtained.  Now you can get a better value by using more terms of the series.  In addition, you can now use the value calculated for 
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Example 3
Derive the Maclaurin series of 
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Solution

In the previous example, we wrote the Taylor series for 
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Using the Taylor series now,
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Example 4
Find the value of 
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Since fourth and higher derivatives of 
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Note that to find 
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 exactly, we only needed the value of the function and all its derivatives at some other point, in this case, 
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             Actually the problem posed above was obtained from a known function 
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Error in Taylor Series
As you have noticed, the Taylor series has infinite terms.  Only in special cases such as a finite polynomial does it have a finite number of terms.  So whenever you are using a Taylor series to calculate the value of a function, it is being calculated approximately.  

The Taylor polynomial of order 
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where the remainder is given by
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that is,
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Example 5
The Taylor series for 
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at point 
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a) What is the truncation (true) error in the representation of 
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 if only four terms of the series are used?  

b) Use the remainder theorem to find the bounds of the truncation error.

Solution

a) If only four terms of the series are used, then
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The truncation (true) error would be the unused terms of the Taylor series, which then are
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b) But is there any way to know the bounds of this error other than calculating it directly?  Yes, 
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The error is bound between
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So the bound of the error is less than 
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 which does concur with the calculated error of 
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Example 6
The Taylor series for 
[image: image151.wmf]x

e

at point 
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As you can see in the previous example that by taking more terms, the error bounds decrease and hence you have a better estimate of 
[image: image154.wmf]1

e

.  How many terms it would require to get an approximation of 
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Solution

Using 
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 terms of the Taylor series gives an error bound of 
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So if we want to find out how many terms it would require to get an approximation of 
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(as we do not know the value of 
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but it is less than 3).
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So 9 terms or more will get 
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 within an error of 
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We can do calculations such as the ones given above only for simple functions.  To do a similar analysis of how many terms of the series are needed for a specified accuracy for any general function, we can do that based on the concept of absolute relative approximate errors discussed in Chapter 01.02 as follows.


We use the concept of absolute relative approximate error (see Chapter 01.02 for details), which is calculated after each term in the series is added.  The maximum value of 
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[image: image176.wmf]m

-

´

2

10

5

.

0

% is the least number of significant digits correct in the answer.  It establishes the accuracy of the approximate value of a function without the knowledge of remainder of Taylor series or the true error.
	INTRODUCTION TO NUMERICAL METHODS
	

	Topic
	Taylor Theorem Revisited

	Summary
	These are textbook notes on Taylor Series

	Major
	All engineering majors

	Authors
	Autar Kaw

	Date
	June 3, 2014

	Web Site
	http://numericalmethods.eng.usf.edu


01.07.1


_1285396252.unknown

_1285396604.unknown

_1285396823.unknown

_1285397088.unknown

_1286374903.unknown

_1460577084.unknown

_1460577374.unknown

_1460810858.unknown

_1463312445.unknown

_1460577413.unknown

_1460577791.unknown

_1460577389.unknown

_1460577141.unknown

_1460577342.unknown

_1460577122.unknown

_1295677339.unknown

_1460577075.unknown

_1290071051.unknown

_1290071052.unknown

_1290070918.unknown

_1285397167.unknown

_1285397256.unknown

_1285397333.unknown

_1285397355.unknown

_1285397385.unknown

_1285397415.unknown

_1285397418.unknown

_1285397388.unknown

_1285397361.unknown

_1285397336.unknown

_1285397296.unknown

_1285397299.unknown

_1285397259.unknown

_1285397184.unknown

_1285397249.unknown

_1285397168.unknown

_1285397131.unknown

_1285397138.unknown

_1285397166.unknown

_1285397134.unknown

_1285397094.unknown

_1285397112.unknown

_1285397091.unknown

_1285396969.unknown

_1285397008.unknown

_1285397069.unknown

_1285397073.unknown

_1285397011.unknown

_1285397065.unknown

_1285396982.unknown

_1285396985.unknown

_1285396978.unknown

_1285396887.unknown

_1285396897.unknown

_1285396900.unknown

_1285396894.unknown

_1285396852.unknown

_1285396855.unknown

_1285396842.unknown

_1285396749.unknown

_1285396801.unknown

_1285396815.unknown

_1285396819.unknown

_1285396806.unknown

_1285396759.unknown

_1285396785.unknown

_1285396753.unknown

_1285396722.unknown

_1285396729.unknown

_1285396746.unknown

_1285396725.unknown

_1285396714.unknown

_1285396717.unknown

_1285396618.unknown

_1285396433.unknown

_1285396527.unknown

_1285396556.unknown

_1285396592.unknown

_1285396596.unknown

_1285396559.unknown

_1285396550.unknown

_1285396553.unknown

_1285396531.unknown

_1285396486.unknown

_1285396493.unknown

_1285396515.unknown

_1285396489.unknown

_1285396440.unknown

_1285396445.unknown

_1285396437.unknown

_1285396349.unknown

_1285396410.unknown

_1285396427.unknown

_1285396430.unknown

_1285396423.unknown

_1285396358.unknown

_1285396393.unknown

_1285396353.unknown

_1285396266.unknown

_1285396342.unknown

_1285396346.unknown

_1285396269.unknown

_1285396259.unknown

_1285396262.unknown

_1285396255.unknown

_1285395977.unknown

_1285396142.unknown

_1285396223.unknown

_1285396238.unknown

_1285396245.unknown

_1285396248.unknown

_1285396241.unknown

_1285396231.unknown

_1285396234.unknown

_1285396226.unknown

_1285396158.unknown

_1285396211.unknown

_1285396219.unknown

_1285396165.unknown

_1285396151.unknown

_1285396154.unknown

_1285396146.unknown

_1285396068.unknown

_1285396108.unknown

_1285396118.unknown

_1285396124.unknown

_1285396112.unknown

_1285396093.unknown

_1285396097.unknown

_1285396072.unknown

_1285396024.unknown

_1285396043.unknown

_1285396046.unknown

_1285396027.unknown

_1285395992.unknown

_1285396007.unknown

_1285395989.unknown

_1285395653.unknown

_1285395815.unknown

_1285395941.unknown

_1285395959.unknown

_1285395973.unknown

_1285395949.unknown

_1285395817.unknown

_1285395860.unknown

_1285395938.unknown

_1285395816.unknown

_1285395722.unknown

_1285395813.unknown

_1285395814.unknown

_1285395768.unknown

_1285395780.unknown

_1285395812.unknown

_1285395776.unknown

_1285395727.unknown

_1285395687.unknown

_1285395718.unknown

_1285395660.unknown

_1285395663.unknown

_1285395656.unknown

_1285395579.unknown

_1285395604.unknown

_1285395646.unknown

_1285395649.unknown

_1285395607.unknown

_1285395590.unknown

_1285395599.unknown

_1285395585.unknown

_1285395496.unknown

_1285395540.unknown

_1285395543.unknown

_1285395537.unknown

_1285395453.unknown

_1285395484.unknown

_1285395450.unknown

