
1/10/2010 http://numericalmethods.eng.usf.edu 1

Differentiation-Continuous 
Functions

Major: All Engineering Majors

Authors: Autar Kaw, Sri Harsha Garapati

http://numericalmethods.eng.usf.edu
Transforming Numerical Methods Education for STEM 

Undergraduates

http://numericalmethods.eng.usf.edu/�


Differentiation – Continuous 
Functions

http://numericalmethods.eng.usf.edu

http://numericalmethods.eng.usf.edu/�


http://numericalmethods.eng.usf.edu3

Forward Difference Approximation
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Figure 1 Graphical Representation of forward difference approximation of first derivative.

Graphical Representation Of 
Forward Difference 

Approximation
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Example 1
The velocity of a rocket is given by

( ) 300,8.9
21001014

1014ln2000 4

4
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t
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where ''ν is given in m/s and ''t is given in seconds. 

a) Use forward difference approximation of the first derivative of        to 
calculate the acceleration at            . Use a step size of            .

b) Find the exact value of the acceleration of the rocket.
c) Calculate the absolute relative true error for part (b).
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Example 1 Cont.
Solution
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Example 1 Cont.
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Example 1 Cont.

2
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The exact value of ( )16a can be calculated by differentiating 

( ) t
t

t 8.9
21001014

1014ln2000 4

4

−







−×

×
=ν

as

( ) ( )[ ]tν
dt
dta =

b)



http://numericalmethods.eng.usf.edu9

Example 1 Cont.

Knowing that
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Example 1 Cont.
( ) ( )
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The absolute relative true error is

100
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Value eApproximat-Value True xt =∈
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674.29

474.30674.29 x−
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Backward Difference Approximation of the 
First Derivative

We know 

( ) ( ) ( )
x

xfxxf
x

xf
Δ

Δ
0Δ

lim −+
→

=′

For a finite 'Δ' x ,

( ) ( ) ( )
x

xfxxfxf
∆

−∆+
≈′

If 'Δ' x is chosen as a negative number, 

( ) ( ) ( )
x

xfxxfxf
∆−
−∆−

≈′

( ) ( )
x

xxfxf
Δ

Δ−−
=



http://numericalmethods.eng.usf.edu12

Backward Difference Approximation of the 
First Derivative Cont.

This is a backward difference approximation as you are taking a point
backward from x. To find the value of ( )xf ′ at ixx = , we may choose another
point 'Δ' x behind as 1−= ixx . This gives
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xx-Δx
x
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Figure 2 Graphical Representation of backward difference 
approximation of first derivative

Backward Difference Approximation of the 
First Derivative Cont.
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Example 2

The velocity of a rocket is given by

( ) 300,8.9
21001014
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where ''ν is given in m/s and ''t is given in seconds. 

a) Use backward difference approximation of the first derivative of        
to calculate the acceleration at           . Use a step size of           .

b) Find the absolute relative true error for part (a).
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Example 2 Cont.
Solution
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Example 2 Cont.
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Example 2 Cont.

The absolute relative true error is

100
674.29

915.28674.29 xt
−

=∈

%5584.2=

The exact value of the acceleration at from Example 1 is

( ) 2m/s674.2916 =a

s 16=t
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Derive the forward difference approximation 
from Taylor series

Taylor’s theorem says that if you know the value of a function '' f at a point 

ix and all its derivatives at that point, provided the derivatives are

continuous between ix and 1+ix , then
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Derive the forward difference approximation 
from Taylor series Cont.

The ( )x∆0 term shows that the error in the approximation is of the order

of ( )xΔ Can you now derive from Taylor series the formula for backward 

divided difference approximation of the first derivative?

As shown above, both forward and backward divided difference

approximation of the first derivative are accurate on the order of ( )x∆0

Can we get better approximations? Yes, another method to approximate   

the first derivative is called the Central difference approximation of

the first derivative. 
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Derive the forward difference approximation 
from Taylor series Cont.

From Taylor series

( ) ( ) ( ) ( ) ( ) ( ) ( ) +
′′′

+
′′

+′+=+
32

1 Δ
!3

Δ
!2

Δ x
xf

x
xf

xxfxfxf ii
iii

( ) ( ) ( ) ( ) ( ) ( ) ( ) +
′′′

−
′′

+′−=−
32

1 Δ
!3

Δ
!2

Δ x
xf

x
xf

xxfxfxf ii
iii

Subtracting equation (2) from equation (1)
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Central Divided Difference

Hence showing that we have obtained a more accurate formula as the  

error is of the order of           .( )2Δ0 x

x

f(x)

x-Δx      x     x+Δx

Figure 3 Graphical Representation of central difference approximation of first derivative 
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Example 3

The velocity of a rocket is given by

( ) 300,8.9
21001014

1014ln2000 4

4
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


−×

×
= tt

t
tν

where ''ν is given in m/s and ''t is given in seconds. 

(a) Use central divided difference approximation of the first derivative of 
to calculate the acceleration at           . Use a step size of           .

(b) Find the absolute relative true error for part (a).

( )tν
st 16= st 2Δ =
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Example 3 cont.

Solution
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Example 3 cont.
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Example 3 cont.

The absolute relative true error is

100
674.29

694.29674.29
×

−
=∈t

%069157.0=

The exact value of the acceleration at from Example 1 is
( ) 2m/s674.2916 =a

s 16=t
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Comparision of FDD, BDD, CDD

The results from the three difference approximations are given in Table 1.

Type of Difference
Approximation

Forward
Backward
Central

30.475
28.915
29.695

2.6967
2.5584

0.069157

Table 1 Summary of a (16) using different divided difference approximations 

( )16a
( )2/ sm

%t∈
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Finding the value of the derivative 
within a prespecified tolerance

In real life, one would not know the exact value of the derivative – so how  

would one know how accurately they have found the value of the derivative.  

A simple way would be to start with a step size and keep on halving the step 

size and keep on halving the step size until the absolute relative approximate 

error is within a pre-specified tolerance. 

Take the example of finding for( )tv′

( ) t
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t 8.9
21001014
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at          using the backward divided difference scheme. 16=t



2
1
0.5
0.25
0.125

28.915
29.289
29.480
29.577
29.625

1.2792
0.64787
0.32604
0.16355
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Finding the value of the derivative 
within a prespecified tolerance Cont.

Given in Table 2 are the values obtained using the backward difference 
approximation method and the corresponding absolute relative 
approximate errors. 

t∆ ( )tv′ %a∈

Table 2 First derivative approximations and relative errors for
different Δt values of backward difference scheme
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Finding the value of the derivative 
within a prespecified tolerance Cont.

From the above table, one can see that the absolute relative 

approximate error decreases as the step size is reduced. At 125.0=∆t

the absolute relative approximate error is 0.16355%, meaning that

at least 2 significant digits are correct in the answer. 
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Finite Difference Approximation of 
Higher Derivatives

One can use Taylor series to approximate a higher order derivative. 

For example, to approximate ( )xf ′′ , the Taylor series for 
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Finite Difference Approximation of 
Higher Derivatives Cont.

Subtracting 2 times equation (4) from equation (3) gives

( ) ( ) ( ) ( )( ) ( )( ) 32
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Example 4

The velocity of a rocket is given by

( ) 300,8.9
21001014

1014ln2000 4
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Use forward difference approximation of the second derivative         
of to calculate the jerk at           . Use a step size of            . 
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Example 4 Cont.

Solution
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Example 4 Cont.
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Example 4 Cont.

( ) ( )
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The exact value of ( )16j can be calculated by differentiating
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Example 4 Cont.

Knowing that
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Example 4 Cont.

( ) ( )[ ]
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3

2

m/s77909.0         
)]16(3200[
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The absolute relative true error is

100
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×

−
=∈t

% 4797.8=

Similarly it can be shown that
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Higher order accuracy of higher 
order derivatives

The formula given by equation (5) is a forward difference approximation of

the second derivative and has the error of the order of ( )xΔ . Can we get 

a formula that has a better accuracy?  We can get the central difference

approximation of the second derivative.

The Taylor series for
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Higher order accuracy of higher 
order derivatives Cont.
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Example 5

The velocity of a rocket is given by

( ) 300,8.9
21001014
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Use central difference approximation of second derivative of        to 
calculate the jerk at               . Use a step size of           .
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Example 5 Cont.
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Example 5 Cont.
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Example 5 Cont.
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Additional Resources
For all resources on this topic such as digital audiovisual 
lectures, primers, textbook chapters, multiple-choice tests, 
worksheets in MATLAB, MATHEMATICA, MathCad and 
MAPLE, blogs, related physical problems, please visit

http://numericalmethods.eng.usf.edu/topics/continuous_02
dif.html

http://numericalmethods.eng.usf.edu/topics/continuous_02dif.html�
http://numericalmethods.eng.usf.edu/topics/continuous_02dif.html�


THE END
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